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ABSTRACT: This paper proposes a new cycle-slip correction method which enables instantaneous correction (i.e., using 
only current epoch’s GPS carrier-phase measurements) at the data quality control stage. The method was originally 
developed for real-time applications which require consistent high-precision positioning results with the carrier-phase 
measurements at 10 Hz data rate. The approach includes: 1) two parameters for generating and filtering cycle-slip 
candidates; and 2) a validation procedure which authenticates correct cycle slip candidates. Compared with conventional 
approaches utilizing carrier phases and pseudoranges, the approach does not require a smoothing or filtering process to 
reduce observation noise. Therefore, it is possible to implement the approach in real-time applications without undue 
complexity. Additionally, the approach enables the determination of system performance (e.g., integrity and continuity) by 
assigning the confidence level of the parameters for cycle-slip candidates in designing the system. Simulation tests were 
conducted to confirm the performance of the approach under the worst case scenarios. Test results carried out in a variety of 
situations including static and kinematic modes, short-baseline and long-baseline situations, and low and high data rates are 
presented. 
 
 
INTRODUCTION 
 

In order to attain consistent high-precision positioning results with GPS carrier-phase measurements, errors unspecified in 
a functional or stochastic model (errors of omission) must be correctly detected and removed or otherwise handled at the data 
processing stage. Such errors in the carrier-phase measurements may include cycle slips, receiver clock jumps, multipath, 
diffraction, ionospheric scintillation, etc. Reliability, which refers to the ability to detect such errors and to estimate the 
effects that they may have on a solution, is one of the main issues in quality control. Texts containing detailed discussions of 
this topic include those by Leick [1] and Teunissen and Kleusberg [2]. A comprehensive investigation of quality issues in 
real-time GPS positioning has been carried out by the Special Study Group (SSG) 1.154 of the International Association of 
Geodesy (IAG) during 1996-1999 [3]. 

The effects of cycle slips and receiver clock jumps can be easily captured either in the measurement or parameter domain 
due to their systematic characteristics. Their systematic effects on the carrier-phase measurements can be almost completely 
removed once they are correctly detected and identified. On the other hand, multipath, diffraction, ionospheric scintillation, 
etc. have temporal and spatial characteristics which are more or less quasi-random. These quasi-random errors cannot be 
completely eliminated and must be handled using a rigorous mathematical approach such as data snooping theory [4]. 
However, statistical testing and reliability analysis can only be efficient if the stochastic models are correctly known or well 
approximated. As has been experienced, quasi-random errors are often mixed with systematic ones in real world situations. 
One reasonable approach for handling errors in such situations is to separate the systematic ones from the quasi-random ones. 
Estimating the quasi-random errors after removing the systematic ones can provide more reliable results in terms of least-
squares estimation. This is the main idea implemented in our quality control algorithm including cycle-slip correction as  
depicted in Figure 1. 

This paper addresses the development of a cycle-slip correction technique designed to detect and correct cycle slips in 
dual-frequency, carrier-phase data in a real-time environment as a part of a quality control algorithm. Our approach was 
originally developed for real-time GPS kinematic applications requiring sub-centimetre accuracy with high-rate data (e.g., 10 
Hz). For the completeness of our discussions, we will first look at the characteristics of the errors of interest. Then, a brief 
explanation of our approach for cycle-slip correction will be given. Several difficult situations, which can be considered as 
the worst cases in real world situations, will be discussed to answer the crucial question: “How perfectly can the method 
work?”  Test results will be presented and discussed, followed by conclusions. 
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ANOMALOUS OBSERVATION DATA 
 

The quality of GPS positioning is dependent on a number of factors. To attain high-precision positioning results, we need 
to identify the main error sources impacting on the quality of the measurements. In terms of data processing, receiver clock 
jumps, cycle slips and quasi-random errors are the main sources which can deteriorate the quality of the measurements and 
subsequently, the quality of positioning results. 
 
Receiver Clock Jumps 

Most receivers attempt to keep their internal clocks synchronized to GPS Time. This is done by periodically adjusting the 
clock by inserting time jumps. The actual mechanism of how the clock in a particular manufacturer's receiver is adjusted is 
typically proprietary. However, like cycle slips, their effects on the code and phase observables are more or less known to 
users and hence it is possible to remove their effects almost completely. At the moment of the clock correction, two main 
effects are transferred into the code and phase observables as illustrated in the following equation: 
 
 ( ) ( ) ( )t t t cρΨ + ∆ ≈ Ψ + Ψ ⋅∆ ≈ Ψ + ⋅∆ − ⋅∆,  (1) 
 
where Ψ  represents the carrier-phase (or pseudorange) measurements (in distance units) and Ψ  its time rate of change; ∆  is 
the clock jump (in time units) which is assumed to be a very small value (e.g., less than or equal to one millisecond); ρ  is 
the geometric satellite-receiver range rate (in distance per time units); and c is the vacuum speed of light. The effects of the 
geometric range corresponding to the clock jump ( c ⋅ ∆ ) are common to all measurements at the moment of the clock jump at 
one receiver. By single-differencing (SD) the measurements between satellites or double-differencing (DD) the 
measurements (that is, differencing between receivers followed by differencing between satellites or vice versa), the common 
effects can be removed. However, the effects of the geometric range rate corresponding to the jump ( ρ ⋅∆ ) are different for 
each observation. They cannot be removed by the SD operation. Instead, Doppler frequency or carrier-phase difference 
measurements should be used for correcting such effects. The clock jumps can be easily detected in both the measurement 
and parameter domains. 
 
Cycle Slips 

Cycle slips are discontinuities of an integer number of cycles in the measured (integrated) carrier phase resulting from a 
temporary loss-of-lock in the carrier tracking loop of a GPS receiver. In this event, the integer counter is re-initialized which 
causes a jump in the instantaneous accumulated phase by an integer number of cycles. Three causes of cycle slips can be 
distinguished [5]: First, cycle slips are caused by obstructions of the satellite signal due to trees, buildings, bridges, 
mountains, etc. The second cause of cycle slips is a low signal-to-noise ratio (SNR) or alternatively carrier-to-noise-power-
density ratio (C/N0) due to severe ionospheric conditions, multipath, high receiver dynamics, or low satellite elevation angle. 
A third cause is a failure in the receiver software which leads to incorrect signal processing. 

Cycle slips in the phase data must be corrected to utilize the full measurement strength of the phase observable. The 
process of cycle-slip correction involves detecting the slip, estimating the exact number of L1 and L2 frequency cycles that 
comprise the slip, and actually correcting the phase measurements by these integer estimates. Cycle slip detection and 
correction requires the location of the jump and the determination of its size. It can be completely removed once it is 
correctly detected and identified. 
 
Quasi-random Errors 

Multipath, diffraction, ionospheric scintillation, etc. may be the main sources of quasi-random errors, which are apt to be 
omitted in the functional and stochastic models. Since least-squares estimation, when errors are present, tends to hide 
(reduce) their impact and distribute their effects throughout the entire set of measurements, it is better to handle cycle slips 
and clock jumps separately from quasi-random errors. To detect and remove quasi-random errors, we have to test a null 
hypothesis (that is, no errors in the measurements) against an alternative hypothesis which describes the type of mis-
specifications in the models (see [1] and [2]).  
 
 
AN INSTANTANEOUS CYCLE-SLIP CORRECTION TECHNIQUE 
 

One of the various methods for detecting and identifying cycle slips is to obtain the triple-difference (TD) measurements 
of carrier phases first. By triple-differencing the measurements (that is, at two adjacent data collection epochs, differencing 
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the DD measurements) biases such as the clock offsets of the receivers and GPS satellites, and ambiguities can be removed. 
The TD observables (in distance per time units) are 
 

 1 1 1 1 1

2 2 2 2 2 ,
C s I b
C s I b

δ δ ρ λ δ δ τ δ δ δ ε
δ δ ρ λ δ δ τ γ δ δ δ ε
∇∆Φ = ∇∆ + ⋅ ∇∆ + ∇∆ + ∇∆ − ∇∆ + ∇∆ + ∇∆
∇∆Φ = ∇∆ + ⋅ ∇∆ + ∇∆ + ∇∆ − ⋅ ∇∆ + ∇∆ + ∇∆

 (2) 

 
where Φ  is the measured carrier phase; ρ  is the geometric range from receiver to GPS satellite; λ  is the carrier 
wavelength ; C is a potential cycle slip (in cycle units); s is the satellite orbit bias; τ  is the delay due to the troposphere; I is 
the delay of L1 carrier phase due to the ionosphere; 2

2 1( / ) 1.65γ λ λ= ≈ ; b is multipath; ε  is receiver system noise; 
subscripts “1” and “2” represent L1 and L2 carrier phases, respectively; and ∇∆  and δ∇∆  are the DD and TD operators, 
respectively. Satellite and receiver instrumentation biases, assumed constant, are ignored. 

In most GPS applications, regardless of surveying mode (static or kinematic) and baseline length (short, medium or long), 
the effects of the triple-differenced biases and noise (i.e., atmospheric delay, satellite orbit bias, multipath, and receiver 
system noise) are more or less below a few centimetres in size as long as the observation sampling interval is relatively short 
(e.g., sampling interval less than 1 minute). There could be exceptional situations such as an ionospheric disturbance, 
extremely  long baselines, and huge (rapid) variation of the heights of surveying points in which the combined effects of the 
biases and noise can exceed the wavelengths of the L1 and L2 carrier phases. However, to simplify our discussion, we will 
assume, for the time being, that such situations can be easily controlled through adjusting the sampling rate so that the 
combined effects of the biases and noise can be reduced to a level below a few centimetres. In the section “Cycle-Slip 
Candidates”, we will see that we can remove this assumption. 
 
Cycle-Slip Observables 

As revealed in equation (2), the geometric range should be removed to estimate the size of cycle slips. If we can replace 
the TD geometric ranges with their estimates, then the TD carrier-phase prediction residuals become 
 

 1 1 1 1 1

2 2 2 2 2

ˆ
ˆ ,

TD

TD

C
C

δ δ δ ρ λ ε
δ δ δ ρ λ ε

′Φ = ∇∆Φ − ∇∆ = ⋅ ∇∆ +
′Φ = ∇∆Φ − ∇∆ = ⋅∇∆ +

 (3) 

 
where 
 

 1 1 1

2 2 2 ,
TD

TD

s I b
s I b

ε δρ δ δ τ δ δ δ ε
ε δρ δ δ τ γ δ δ δ ε

′ = + ∇∆ + ∇∆ − ∇∆ + ∇∆ + ∇∆
′ = + ∇∆ + ∇∆ − ⋅ ∇∆ + ∇∆ + ∇∆

 (4) 

 
and ˆ( )TDδρ δ ρ δ ρ= ∇∆ − ∇∆  represents the prediction residuals of the TD geometric ranges. Therefore, the TD carrier-phase 
prediction residuals will be a good measure for detecting and correcting cycle slips if the effects of the residuals in equation 
(4) are small. 
 
TD Geometric Range Estimation 

To obtain the estimates of the TD geometric ranges, we need another observable which is immune from cycle slips. The 
Doppler frequency and the TD pseudoranges can be used for this purpose. The former is preferable to reduce the effects of 
the residuals in equation (4). Using the Doppler frequency at two adjacent data collection epochs, we have 
 
 ( )1ˆ / 2k k kD Dδ ρ −∇∆ = − ∇∆ + ∇∆ , (5) 
 
where D is the Doppler frequency (in distance per time units); subscripts “k” and “k-1” represent the time tags of two 
adjacent data collection epochs and the sign is reversed due to the definition of Doppler shift. For some receivers from which 
the Doppler frequency is not available to users, the TD pseudoranges (a noisier observable than the Doppler frequency) can 
be used instead. In this case, the estimate of the TD geometric range is given as: 
 
 ( )1ˆ /k k kP P tδ ρ δ δ δ−∇∆ = ∇∆ − ∇∆ , (6) 
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where P is the measured pseudorange and 1( )k kt t tδ −= −  is the time interval between two adjacent data collection epochs. 
 
Cycle-Slip Candidates 

Consider the first two moments of the TD carrier-phase prediction residuals 
 

 
[ ]

[ ] [ ]
, 1, 2

,
TDi i i

TDi i

E C i
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Φ = ⋅∇∆ =

′Φ =
 (7) 

 
where [ ]E ⋅  and [ ]Cov ⋅  are the mathematical expectation and variance-covariance operators. Since there is no redundancy to 
carry out statistical testing for equations (7), we will use it to obtain the cycle-slip candidates. In this case, we need a priori 
information for the second moment. This can be obtained either through system tuning or adaptive estimation. This means 
that we do not have to assume specific models for the biases and noise in equation (4). Introducing a threshold associated 
with the second moment, we can obtain the cycle-slip candidates as: 
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where ( )iCS ∈  represents the cycle-slip candidates; 

iCSε  is a threshold value derived from the second moment; and k is a 
scale factor which can define the level of integrity in designing the quality control routine. 
 
Filtering of Cycle-Slip Candidates 

When dual-frequency carrier phases are available, we can reduce, to a large extent, the number of cycle-slip candidates 
using the TD geometry-free phase (a scaled version of which is called the differential ionospheric delay rate). The TD 
geometry-free phase (in distance per time units) is 
 

 ( )
1 2

1 1 2 2 ,
GF

C C
δ δ δ

λ λ ε
Φ = ∇∆Φ − ∇∆Φ

′′= ⋅ ∇∆ − ⋅ ∇∆ +
 (9) 

 
where 
 
 ( ) ( ) ( )1 2 1 21 I b bε γ δ δ δ δ ε δ ε′′ = − ∇∆ + ∇∆ − ∇∆ + ∇∆ − ∇∆ . (10) 
 

Compared with equation (4), the effects of the residuals in equation (10) are usually smaller. We can also consider the 
first two moments of the TD geometry-free phase 
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In conjunction with equations (8), equations (11) can be used to filter out most cycle-slip candidates which are not real 

cycle slips. A threshold test is given as: 
 

 
[ ] ,

GF GF

GF

CS

k Cov

δ ε

ε ε

′ − Φ ≤

′′= ⋅
 (12) 

 
where 1 1 2 2CS CS CSλ λ′ = ⋅ − ⋅ ; GFε  is a threshold value derived from the second moment; and k is the scale factor used in 
equations (8). An exceptional case is the combination-insensitive cycle-slip pairings of which the expectation in equations 
(11) is close to zero. We will discuss this case in the section “Worst Case Simulation Scenarios”. 
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Cycle-Slip Validation 
Fixing cycle slips in the TD measurements is conceptually the same problem as resolving ambiguities in the DD 

measurements. Consider the linearized model of the TD observables in equations (2): 
 

 
[ ]

, ,
,

n u

Cov
= + + ∈ ∈

=
y Ac Bx e c x

y Q
 (13) 

 
where y is the 1n×  vector of the differences between the TD measurements and their computed values; n is the number of 
measurements; c is the 1n×  vector of the cycle-slip candidates; x is the 1u ×  vector of all other unknown parameters 
including position and other parameters of interest; u is the number of all other unknowns except cycle slips; A and B are the 
design matrices of the cycle-slip candidates and the other unknown parameters; e is the 1n×  vector of the random errors. The 
first step for cycle-slip validation is to search for the best and second best cycle-slip candidates which minimize the quadratic 
form of the residuals. The residuals of least-squares estimation for cycle-slip candidates are given as: 
 
 ˆ ˆ′= −v y Bx , (14) 
where 
 

 ( )ˆ .

′ = −

′=
-1T -1 T -1

y y Ac

x B Q B B Q y
 (15) 

 
Then, discrimination power between two candidates is measured by comparing their likelihood. We follow a conventional 

discrimination test procedure similar to that described by Wang et al. [6]. A test statistic for cycle-slip validation is given by 
 
 d = Ω − Ωc1 c2 , (16) 

 
where Ωc1  and Ωc2  are the quadratic form of the residuals of the best and second best candidates. A statistical test is 
performed using the following null and alternative hypotheses: 
 
 [ ] [ ]0 1: 0, : 0H E d H E d= ≠ . (17) 
 

A test statistic for testing the above hypotheses is given by 
 

 
( )

dW
Cov d

= , (18) 

 
where 
 

 [ ] ( ) ( )4

.

Cov d = − −

= −

T -1
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-1 -1 -1 T -1 -1 T -1
c

c c Q c c
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 (19) 

 
If y is assumed as having a normal distribution, d is normally distributed. Therefore, W has mean 0 and standard deviation 

1 under the null hypothesis. Adopting a confidence level ,α  it will be declared that the likelihood of the best cycle-slip 
candidate is significantly larger than that of the second best one if  
 
 ( )0,1;1W N α> − . (20) 
 

Finally, a reliability test is carried out after fixing cycle slips from equations (13) in order to diagnose whether errors still 
remain in the measurements. We will not discuss this here (see [1] and [2] for more detail). 
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WORST CASE SIMULATION SCENARIOS 
 

A reliable and fully operational cycle-slip fixing routine should operate successfully under the worst-case situations. We 
consider three cases: combination-insensitive cycle-slip pairings, continuous cycle slips, and low quality measurements. 
 
Combination-Insensitive Cycle-Slip Pairings 

As has been reported for conventional cycle-slip fixing approaches using dual-frequency measurements ([7], [8], [9], [10] 
and [11]), there are particular cycle-slip pairings which cannot be readily detected in the geometry-free combination. From 
equation (9), the combination-insensitive cycle-slip pairings are defined as ones which satisfy the following: 
 
 [ ] 1 1 2 2GFE C Cδ λ λ εΦ = ⋅∇∆ − ⋅ ∇∆ ≤ , (21) 
 
where ε  is a threshold value which can be obtained from the second moment in equations (11). Theoretically, there are many 
such cycle-slip pairings. However, they can be reduced to a very small number in conjunction with equations (7). 
 
Continuous Cycle Slips 

A loss of lock may be shorter than the time interval between two adjacent data collection epochs or as long as the time 
interval stretching over many epochs. Although the carrier phases are continuous, they are sampled during a very short time 
interval (e.g., 1 millisecond) in a receiver. Each of the sampled carrier phases can experience cycle slips. The carrier-phase 
measurements obtained under high-dynamics and at a low sampling rate may have continuous cycle slips (that is, each 
sequential observation is afflicted with a different cycle slip). Conventional approaches using smoothing and filtering 
techniques ([8], [9], [12], [13], [14], [15] and [16]) cannot handle such situations appropriately. 
 
Low Quality Measurements 

Removing quasi-random errors is still a big challenge in quality control. One of the most difficult situations in fixing 
cycle slips is when cycle slips are mixed up with quasi-random errors. Some conventional approaches for quality control, 
which do not handle cycle slips separately, may have a potential problem in such situations. 
 
 
TEST RESULTS 
 

In order to illustrate the performance of our approach, we have tested it with data sets recorded in static and kinematic 
modes, in short-baseline and long-baseline situations, and at low and high data rates. NovAtel OEM3 (MiLLennium), 
Navcom NCT-2000D and Ashtech Z-12 receivers were used to record dual-frequency data. A summary of the tests is given 
in Table 1. 
 

Table 1 – Summary of the tests 

 Test 
Mode 

Approx. 
Baseline 
Length 

Data 
Rate Receiver Type Doppler 

Frequency Remarks 

Test 1 Static 60 m 10 Hz NovAtel OEM3 Available 
Test 2 Static 60 m 10 Hz Navcom NCT-2000D Not available 
Test 3 Static 60 m 1 Hz Ashtech Z-12 Available 

Tests were conducted under the 
same environments: static, short-
baseline and strong multipath. 

Test 4 Kinematic 10 m 1 Hz Ashtech Z-12 Available Circular motion with irregular speed 
Test 5 Kinematic 80 km 1 Hz Ashtech Z-12 Available Driving a car at high speed 

 
 
Verification of the Receiver Clock Jumps 

Two typical examples of receiver clock jumps are illustrated in Figures 2 and 3. The first example is a millisecond jump 
which occurred in the Ashtech Z-12 as seen in Figure 2. The top panel shows the receiver clock offsets estimated by the C/A-
code pseudoranges and reveals that the millisecond jumps occurred about every 7 minutes. As was explained in the section 
“Receiver Clock Jumps”, the effects on the geometric range corresponding to the jumps are removed in the DD 
measurements. However, the effects on the geometric range rate corresponding to the jumps still remain in the DD 
measurements. The spikes in the TD time series, as seen in the middle and bottom panels, disclose the significance of such 
effects. Using the Doppler frequency, such effects can be easily estimated and removed. The second example is a very small 
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clock jump which occurred in the Navcom NCT-2000D as seen in Figure 3. The top panel shows the receiver clock offset 
estimates including the microsecond-level jumps which occur every second. Since the jumps are so small, the effects of the 
geometric range rate corresponding to the jumps seem to be buried in the noise of the TD measurements; i.e., the TD time 
series would not reveal the spikes as verified in the middle and bottom panels. However, it should be noted that such effects 
could reach the level of a few centimetres when a satellite is close to the horizon and at the same time the receiver 
experiences high dynamics. Without correcting for such effects, we may have difficulty in fixing cycle slips and subsequently, 
in overall quality control of the carrier-phase measurements. 
 
Tuning the Parameters for Cycle-Slip Candidates 

Two parameters are involvedin examining cycle-slip candidates in our approach. The threshold of the TD geometry-free 
phase, GFε , is used in filtering cycle-slip candidates while that of the TD prediction residuals, 

iCSε , is used in generating the 
candidates. Figures 4 and 5 show two typical examples of the parameters which are tuned for the cycle-slip candidates. The 
examples were taken from Test 1 (static, short-baseline, high data rate) and Test 5 (kinematic, long-baseline, low data rate), 
respectively. Assuming that the systematic errors such as the receiver clock jumps and cycle slips are removed in the carrier-
phase measurements, the parameters reflect the combined effects of the biases and receiver system noise. As a result, they are 
highly dependent on the receiver type and test environments. This means that we need to tune the parameters either via 
calibration or adaptive estimation. The examples not only highlight this requirement, but also reveal the quasi-random 
characteristic of the biases and noise. One crucial use of the quasi-random characteristic of the biases and noise is employing 
their second moments to set the threshold values in limiting the range of cycle-slip candidates and filtering the candidates. 

The estimates of the parameters are summarized in Table 2. After removing the systematic errors in the measurements for 
each data set, one thousand epochs of measurements were used to estimate the parameters. Assuming that the combined 
effects of the biases and noise follow a normal distribution, the confidence level of the estimates in Table 2 corresponds to 
99.7% (i.e., k = 3). For example, given the values of the TD prediction residuals at a certain epoch in Test 5, the probability 
that the cycle-slip candidates in the range of ± 1 cycle (about 19 cm and 24 cm for L1 and L2, respectively) centred at the 
given TD values include the true cycle-slip values is over 99.7 %. Setting GFε  to 1 cm in the example, the probability that the 
candidates passing the threshold test in equations (12) include the true cycle-slip values is over 99.7%. 
  

Table 2 – Estimates of the parameters for cycle-slip candidates (k = 3)  (mm) 
Test 1 *Test 2 Test 3 Test 4 Test 5  mean σ rms mean σ rms mean σ rms mean σ rms mean σ rms 

GFε  0.2  4.5  4.5  0.0  16.6  16.6 0.0 4.5 4.5 0.0  9.6  9.6 -0.2 7.6 7.6  

1CSε  0.3  16.5  16.5  -1.5  186.9  186.9 0.0 5.7 5.7 -0.3  271.5  271.5 0.0 142.2 142.2  

2CSε  0.3  16.8  16.8  -1.5  187.5  187.5 0.0 7.2 7.2 -0.3  271.5  271.5 0.3 143.1 143.1  
*Compared with the estimates of Test 1 and 3, those of Test 2 are noisier because the Doppler frequency was not available in 
Test 2. 
 
Verification of Quasi-Random Errors 

Quasi-random errors such as multipath, diffraction, ionospheric scintillation, etc. usually make it difficult to fix cycle 
slips correctly. Since the cycle slip constraint of discontinuities of an integer number of cycles does not apply to quasi-
random errors, fixing cycle slips is a big challenge when systematic and quasi-random errors are interspersed. One typical 
example of signal diffraction due to obstructions is illustrated in Figures 6 through 8. The example was taken from Test 3. 
Figure 6 shows that one satellite (PRN 21) was temporarily (for about 2 minutes) blocked by the penthouse on the roof of 
Gillin Hall at UNB. (Head Hall data acquired during the period of obstruction on Gillin Hall has been deleted in the bottom 
panel) Rapid signal degradation at the moment of signal obstruction as seen in the middle panel implies that there could be 
significant deterioration in the quality of the measurements. On the other hand, Figure 7 shows that the other satellite (PRN 
27), which was used with PRN 21 in generating the DD measurements, did not suffer from such effects. This appears to 
confirm that the spikes in the TD measurements seen in Figure 8 were due to signal diffraction. 

Two numerical examples are given in Figure 8 to explain how our approach handles such situations. Two pairs of the TD 
L1 and L2 measurements, the points A1 and A2, and B1 and B2, were obtained at elapsed time 76 and 78 seconds, 
respectively. Firstly, we generated cycle-slip candidates for each pair using the parameter estimates of Test 3 in Table 2. 
Then the threshold test in equations (12) was carried out to filter the candidates. We outline the result in Table 3. Since there 
is no cycle-slip candidate which passes the threshold test, we can conclude that at the 99.7 % confidence level the spikes in 
Figure 8 are not cycle slips. It should be noted that the validation test described in the section "Cycle-Slip Validation" should 
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be performed if more than one cycle-slip candidate passes the threshold test. A conventional quality control procedure (e.g., 
data snooping) follows the cycle-slip correction routine to identify and remove the problematic measurements. 
 

Table 3 – Filtering the cycle-slip candidates ( 4.5GFε =  when k = 3) 
A1 and A2 B1 and B2  

L1 L2 L1 L2 
 CS Candidates (cycles) 1 1 1 1 
 1 1 2 2CS CS CSλ λ′ = ⋅ − ⋅  (mm) -50 -50 
 TD Measurements (m/sec) 191 195 110 140 
 1 2GFδ δ δΦ = ∇∆Φ − ∇∆Φ  (mm) -4 -30 
  GFCS δ′ − Φ  (mm) 46 20 
 Threshold Test Result Not passed Not passed 

 
 
Instantaneous Cycle-Slip Correction Performance 

We have tested our approach using data sets recorded in a variety of situations. Two aspects have stood out in the tests. 
First, the approach is capable of instantaneous cycle-slip correction. This means that it is suitable for real-time applications, 
not only for post-processing. Second, the approach can handle cycle slips in low quality measurements. Unlike conventional 
approaches, therefore, we do not have to discard the measurements obtained at low elevation angles and from weak signals 
with low C/N0 values. As a result, our approach tends to increase observation redundancy and hence system performance 
(e.g., integrity, continuity, accuracy and availability) is improved. A typical example which shows the performance of our 
approach is illustrated in Figures 9 through 11. Figures 9 and 10 show the two satellites which were used in generating the 
DD measurements. They were observed more or less at high elevation angles. However, the signal of one satellite (PRN 8) 
was heavily affected by what appears to be ground-bounce multipath as seen in Figure 9. While the L1 signal was still fairly 
strong in such situations, the L2 signal was fading quickly and automatic gain control attempted to compensate for the low 
gain situation. As a result, we can see L2/P2 C/N0 gain jumps in the middle and bottom panels. Figure 11 shows that the L1 
and L2 TD measurements were contaminated by many cycle slips (the first and third panels) and confirms that our approach 
fixed them perfectly (the second and fourth panels). 
 
Worst Case Simulation Test 

A simulation test was carried out to confirm the performance of our approach under worst-case scenarios. Firstly, we 
selected a data set which was recorded under high dynamics and in an abundant ground-bounce multipath environment. 
Fixing cycle slips in such situations is still a big challenge. A typical example of such situations is illustrated in Figures 12 
and 13. Figure 12 shows that there was frequent irregular maneuvering while recording the data. High dynamics can be 
evidenced by jerks due to circular motion with irregular speed. This data set was collected during Test 4. The middle and 
bottom panels in Figure 13 indicate that the rover was experiencing severe signal degradation due to multipath and receiver 
system noise during the test. Pre-processing was conducted to detect and correct the systematic errors such as receiver clock 
jumps and cycle slips. After fixing the systematic errors, we used the data in the simulation test. We then simulated cycle 
slips which represent the most combination-insensitive cycle-slip pairing: the nine-to-seven combination of L1 and L2 phases 
in cycle units. The effect of such a combination in the TD geometry-free phase is only 3.2 mm 1 2( 9 7 )λ λ≈ ⋅ − ⋅ , this value 
being too small to be filtered by the threshold test in equations (12).  This combination was multiplied by randomly selected 
integer numbers in the range [-5,5] continuously for 100 seconds and added to the original data. We also selected the worse 
place to simulate cycle slips – they were put in the middle of the circular motion portion of the data set (elapsed time 700 to 
800 seconds) as seen in Figure 14. The simulated cycle slips reflect exactly what we have described in the section "Worst 
Case Simulation Scenarios". Furthermore, we introduced more difficult situations in the simulation test. Figure 15 shows the 
entire collection of cycle slips simulated simultaneously for all satellites. This additional condition was also considered for 
the completeness of our approach. Figure 16 shows an example of cycle-slip recovery for this simulation. The result was 
compared with the original cycle-slip-free data set in Figure 12. It was confirmed that our approach performed perfectly in 
the given situations. As a matter of fact, the simulated cycle slips for all satellites were correctly recovered simultaneously. 

A numerical example which shows a snapshot result of our approach is summarized in Tables 4 and 5. The simulated 
cycle slips and TD measurements for all DD satellite pairs at elapsed time 700 seconds are given in Table 4. Using the 
parameter estimates of Test 4 in Table 2, we generated and filtered cycle-slip candidates for each pair according to equations 
(8) and (12), respectively. We purposely used an almost 100% confidence level (k = 10) in this example. As seen in the 
bottom row of Table 4, more than one pair of cycle-slip candidates passed the threshold test in equations (12). Accordingly, 
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we carried out the validation test described in the section "Cycle-Slip Validation". We outline the result in Table 5. The first 
and second best combinations of the candidates which minimize the quadratic form of the residuals were obtained and then 
the discrimination power between them was measured statistically. Assuming that the combined effects of the biases and 
noise in the carrier-phase measurements follow the normal distribution, the W-estimate in Table 5 represents the threshold-
to-noise variance ratio of the standard normal distribution function. Therefore, we can be assured at an almost 100% 
confidence level that the first best combination represents the true cycle-slip values in this example. This confirms that our 
approach recovered the simulated cycle slips correctly. 
 

Table 4 – Filtering the cycle-slip candidates (
1 2

32, 905, 905GF CS CSε ε ε= = =  when k = 10) 
DD Pairs (PRN 1/PRN 2)  

23/3 3/28 28/1 1/25 25/13 13/19 19/31 31/15 15/17 

Simulated CS (cycles) L1 
L2 

-9 
-7 

9 
7 

18 
14 

9 
7 

27 
21 

9 
7 

18 
14 

-18 
-14 

0 
0 

TD Measurements (m/sec) L1 
L2 

-1.582 
-1.569 

1.537 
1.541 

3.121 
3.123 

1.272 
1.273 

5.431 
5.432 

1.336 
1.337 

3.060 
3.056 

-3.874 
-3.865 

0.368 
0.372 

CS Candidates (cycles) L1 
L2 

-13 -9 -4 
-10 -7 -3 

9  14 
7  11 

14  18  23 
11  14  18 

9  14 
7  11 

23  27  32 
18  21  25 

9 
7 

18 
14 

-18 
-14 

0 
0 

 
 
 
 

Table 5 – Cycle-slip validation 
 First Best Combination Second Best Combination 

CS Candidates -9  9  18  9  27  9  18  -18  0 -4  14  23  14  32  9  18  -18  0 
cΩ  2.8 11004.0 

d 11001.2 
L1 

W 13.2 
CS Candidates -7  7  14  7  21  7  14  -14  0 -3  11  18  11  25  7  14  -14  0 

cΩ  3.9 11523.0 
d 11519.1 

L2 

W 14.7 
 
 
CONCLUSION 
 

Over the past decade, a number of methods have been developed to handle errors in the carrier-phase measurements. 
There are, in large, two main research streams in this area: cycle-slip-related research and quality-control-related research. 
The former focuses mainly on cycle slips and takes advantage of the systematic characteristics of cycle slips, more or less 
ignoring the effects of the other errors. As a matter of fact, cycle slips are the biggest error source if they remain in the 
carrier-phase measurements. On the other hand, the latter approach considers that all biases and errors must be detected by a 
rigorous statistical test such as the reliability test. This approach tends more or less not to utilize the advantage taken by the 
former. We use a hybrid method for quality control: systematic errors such as cycle slips and receiver clock jumps are 
examined and corrected first; then, a reliability test is carried out to reduce the effects of quasi-random errors. 

Three main features differentiate our approach from conventional techniques. First, our approach is suitable for kinematic 
applications either in real-time or in post-processing mode. Unlike conventional approaches such as a sequential least-squares 
estimator or Kalman filter which uses the prediction values of the measurements for quality control, our approach does not 
require them. Instead, it utilizes only the current epoch's measurements for quality control. Therefore, the approach can attain 
high performance even when a receiver platform is maneuvering. Second, the approach can handle cycle slips in low quality 
measurements, so that we do not have to discard the measurements obtained at low elevation angles and from weak signals 
with low C/N0 values. As a result, the approach tends to increase observation redundancy and hence system performance in 
terms of integrity, continuity, accuracy and availability is improved. Third, the approach enables us to determine system 
performance by simply assigning the confidence level of the parameters for cycle-slip candidates when designing the system. 
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Tests carried out in a variety of situations including static and kinematic modes, short-baseline and long-baseline 
situations, and low and high data rates have confirmed the high performance of our approach. A worst-case simulation test 
has also proved its performance. However, we are aware that the same generic (intrinsic) limitations as with least-squares 
estimation still remain in our approach; i.e., the need for redundancy and stochastic modelling. To increase redundancy, we 
need to use as many measurements as are available in real world scenarios. In this case, many problematic situations can 
occur in the measurements, particularly ones obtained at low elevation angles and from weak signals with low C/N0 values. 
As mentioned previously, our approach indeed works well in such situations. Finally, statistical testing and  reliability 
analysis can only be efficient if the stochastic models are correctly known or well approximated. obtaining a reliable 
stochastic model is still a big challenge. However, the “differencing-in-time” method described in one of our previous papers 
[17] has been successfully tested and implemented in our approach. 
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Fig. 1 – Quality control of the carrier-phase measurements in conjunction with an instantaneous cycle-slip correction 
routine (steps labelled in italics). 
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Fig. 2 – Effects of the receiver clock jumps (Ashtech Z-12, Test 3): the receiver clock offset estimates (top); and the L1 and 
L2 TD measurements disclosing the effects of the geometric range rate corresponding to the jumps (middle and bottom). The 
number in square brackets is the GPS Time of first observation. Vertical axis scale for TD values is normalized using the 
observation sampling interval (dt). 
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Fig. 3 – Effects of the receiver clock jumps (Navcom NCT-2000D, Test 2): the receiver clock offset estimates (top); and the 
L1 and L2 TD measurements hiding the effects of the geometric range rate corresponding to the jumps (middle and bottom). 
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Fig. 4 – Tuning the parameters for cycle-slip candidates (Test 1): a scaled version of the TD geometry-free phase where 

/( 1)GFdI δ γ= Φ −  (top); and the TD prediction residuals of L1 and L2 where TDdTD δ= Φ  (middle and bottom). 
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Fig. 5 – Tuning the parameters for cycle-slip candidates (Test 5): a scaled version of the TD geometry-free phase where 

/( 1)GFdI δ γ= Φ −  (top); and the TD prediction residuals of L1 and L2 where TDdTD δ= Φ  (middle and bottom). 
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Fig. 6 – Signal degradation due to diffraction (middle) (Test 3). 
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Fig. 7 – Normal (i.e., not problematic) signal reception situations confirmed by the satellite elevation angles and C/N0 values 
(Test 3). 
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Fig. 8 – Effects of signal diffraction in the L1 and L2 TD measurements (Test 3). 
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Fig. 9 – Signal degradation due to multipath (Test 1). 
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Fig. 10 – Normal (i.e., not problematic) signal reception situations confirmed by the satellite elevation angles and C/N0 
values (Test 1). 
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Fig. 11 – Performance of instantaneous cycle-slip correction. 
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Fig. 12 – Data set obtained in high dynamics scenario (Test 4). 
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Fig. 13 – Signal degradation due to multipath and receiver dynamics (Test 4). 
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Fig. 14 – Simulated (accumulated) L1 and L2 cycle slips (the top two panels), and the TD L1 and L2 measurements 
containing them (the bottom two panels) (Test 4). 
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Fig. 15 – Simulated (accumulated) L1 and L2 cycle slips for all satellites (Test 4). 
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Fig. 16 – Recovery of the simulated cycle slips (Test 4). 
 
 


