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ABSTRACT 
 

We propose a new approach for the stochastic model 
for long-baseline kinematic GPS positioning which can be 
derived directly from the observation time series under a 
simple assumption. The performance of our approach was 
compared with those of existing approaches for the 
stochastic model – the elevation-angle dependent function 
approach, the signal-to-noise ratio or alternatively the 
carrier-to-noise-power-density ratio approach, and the 
least-squares adaptation approach. 

 
These alternative approaches may have significant 

limitations in some applications: First, the elevation-angle 
dependent function is not advisable in kinematic 

situations because the relationship between antenna gain 
and the signal elevation angle may be difficult to assess 
when the antenna orientation is changing which can 
happen often in kinematic situations. Second, although 
some GPS receiver manufacturers provide SNR-like 
values in their data streams, easily-interpreted SNR values 
are not easy to come by. Third, the least-squares 
adaptation approach is not advisable for the long-baseline 
kinematic applications because it is difficult to obtain 
surplus redundancy in such applications. 

 
Our new approach is free of these difficulties. 

Although initially developed for long-baseline kinematic 
applications, it can be used for all situations whether 
short-baseline or long-baseline, static or kinematic, and 
for either real-time or post-processing needs. 
 
1. INTRODUCTION 
 

Resolving the GPS carrier-phase ambiguities has been 
a continuing challenge for sub-centimeter-level high-
precision GPS positioning. The GPS carrier-phase 
ambiguity represents the arbitrary counter setting (an 
integer value) of the carrier-phase cycle tracking register 
at the start of observations of a satellite (phase lock), 
which biases all measurements in an unbroken sequence 
of that satellite’s carrier-phase observations. Once the 
integer ambiguities are fixed correctly, the carrier-phase 
observations are conceptually turned into millimeter-level 
high-precision range measurements and hence it is 
possible, in principle, to attain sub-centimeter-level 
positioning solutions. However, resolving the integer 
ambiguities is a non-trivial problem, especially if we aim 
at computational efficiency and a high success rate. 
 

To obtain optimal solutions in the least-squares 
estimation, a functional (or deterministic) and a stochastic 
model should be specified correctly, where the functional 
model describes the relationship between observations 
and unknown parameters while the stochastic model 
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represents the noise characteristics of the observations. As 
has been experienced, the stochastic model is typically 
more difficult to handle than the functional model when 
considering a reliable approach for some GPS uses such 
as long-baseline and kinematic applications. 

 
In general, the stochastic model is involved in three 

processes of the GPS data processing – the quality control 
and assurance of the measurements, the ambiguity 
resolution, and the least-squares estimation. If the 
stochastic model is not correct, the quality control and 
assurance process used to detect and fix cycle slips in L1 
and L2 carrier-phase observations may not work correctly. 
The result of faulty cycle-slip fixing can be a disaster in 
the applications using GPS carrier-phase observations 
because it introduces artificial biases into the observations 
and subsequently, the estimated parameter values. An 
incorrect stochastic model also makes it difficult to 
resolve correct ambiguities. If the resolved ambiguities 
are not correct, similar effects to the faulty cycle-slip 
fixing are transferred to the parameter values. Compared 
with the effect of the faulty cycle-slip fixing and incorrect 
ambiguities on least-squares solutions, that of an incorrect 
stochastic model is less important. However, the quality 
of the solutions can be interpreted as too optimistic or 
conservative if an incorrect stochastic model is used. 
 

A preliminary idea of our approach was presented at 
the ION GPS-2000 meeting [Kim and Langley, 2000]. 
The overall objective of this paper is to justify our 
approach based on well-defined test scenarios. 

 
2. CORRELATION IN THE OBSERVATION TIME 
SERIES 

 
When we talk about the stochastic model, we are 

usually interested in a fully populated variance-covariance 
matrix. To obtain this matrix, we have to take into account 
correlation in the observation time series. Three typical 
physical correlation types exist in the GPS observations: 
First, cross-correlation which represents the correlation 
between different observation types (e.g., L1 and L2 
carrier-phase, and C1, P1 and P2 pseudorange). Second, 
temporal correlation which represents the correlation 
between sequential observations (epoch to epoch). Third, 
spatial correlation which represents the correlation among 
‘all-in-view’ simultaneous observations. Another possible 
physical correlation is inter-channel correlation which 
may exist among the receiver channels. If we use a 
differencing scheme in the measurement domain, 
mathematical correlation also exists. 

 
It may be helpful to classify the correlation types in 

terms of correlation sources. The temporal and spatial 
correlations are due to biases such as atmospheric effects 
(i.e., ionosphere and troposphere), satellite orbit bias, 

multipath and so on. On the other hand, the cross-
correlation and inter-channel correlation are due to the 
receiver signal processing methods. 
 

As we usually experience, correlation makes it 
difficult to obtain a correct stochastic model. However, 
correlation is not always so bad because some biases can 
be canceled due to correlation in the observation time 
series. For example, spatially correlated biases can be 
canceled by differencing the observations in the 
measurement domain. The single- and double-difference 
are such cases. Applying the same concept, temporally 
correlated biases can be canceled by differencing the 
observations in the time domain (e.g., triple-, quadruple- 
and quintuple-difference). We will take advantage of these 
concepts in estimating the stochastic model in our 
approach.  

 
3. PREVIOUS WORK 
 

A brief review in terms of advantages and 
disadvantages of the previous work on stochastic 
modeling which has been carried out by many research 
groups all over the world will be useful in figuring out the 
problems related to particular GPS applications such as 
short-baseline or long-baseline situations, static or 
kinematic mode, and real-time or post-processing 
operations. There are several approaches which provide 
somewhat realistic stochastic models: the elevation-angle 
dependent function approach [Euler and Goad, 1991; Jin, 
1996]; the signal-to-noise ratio (SNR) or alternatively the 
carrier-to-noise-power-density ratio (C/N0) approach 
[Hartinger and Brunner, 1998; Barnes et al., 1998; 
Collins and Langley, 1999]; the least-squares adaptation 
approach [Han, 1997; Wang et al., 1998; Wang, 1999; 
Tiberius and Kenselaar, 2000]. Fundamental discussions 
on the observation noise were given by Langley [1997] 
and Tiberius et al. [1999]. 

 
The elevation-angle dependent function approach 

takes into account the elevation-angle dependence of the 
observation noise. This approach is easy to implement in 
data processing software as long as the parameters of the 
function are calibrated in the laboratory. However, this 
approach does not provide information on cross-
correlation and spatial correlation. This means that we 
cannot get the fully populated variance-covariance matrix 
from the approach. Furthermore, it should be noted that 
the elevation-angle dependence of the observation noise 
often varies with the particular kinematic situation. The 
elevation-angle dependence of the observation noise is 
induced mainly by the receiver antenna’s gain pattern, 
with other factors such as atmospheric signal attenuation 
(spacecraft antenna beam-shaping ensures an almost 
uniform signal field strength independent of elevation 
angle). The elevation angle is normally computed with 
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respect to the local geodetic horizon plane at the antenna 
phase center regardless of the actual orientation of the 
antenna. Accordingly, the relationship between antenna 
gain and the signal elevation angle may be difficult to 
assert when the antenna orientation is changing which can 
happen often in kinematic situations. 

 
The SNR (or alternatively C/N0) approach provides 

actual observation noise information which can be 
derived directly from measurements of the quality of each 
pseudorange and carrier-phase observation. This 
information is contained in the SNR measurement. This 
value determines, in part, how well the receiver’s tracking 
loops can track the signals and hence (to a large degree) 
how precisely the receiver obtains pseudorange and 
carrier-phase observations [Langley, 1997]. Since 
multipath signals can adversely impact the receiver SNR 
depending on whether the direct and reflected signal 
components reaching the receiver combine constructively 
or destructively [Cox et al., 1999], this approach does 
provide realistic observation noise in strong multipath 
environments. This may be a good approach for the 
precise point positioning (PPP) technique in which there 
is not enough redundancy to mitigate the effect of 
multipath except by down-weighting. Although some 
GPS receiver manufacturers provide SNR values in their 
data streams, meaningful SNR values are not always easy 
to come by (see Collins and Langley [1999]). 
Furthermore, this approach also does not provide the fully 
populated variance-covariance matrix. 

 
The least-squares adaptation approach, which can be 

incorporated within a recursive processing scheme such 
as the Kalman filter and the sequential least-squares 
estimator, generally provides optimal stochastic models. 
In addition, it is easy to obtain information for the cross-
correlation and spatial correlation from the approach. 
However, the optimality of the least-squares estimation is 
not always guaranteed because it depends on assumptions 
on correlation: e.g., no temporal correlation or a certain 
order of temporal correlation. The estimates can be too 
optimistic or conservative if the assumptions are not 
satisfied. Furthermore, there are particular applications 
where no observation redundancy is provided. In long-
baseline applications, typically we cannot get observation 
redundancy as long as we take into account all significant 
biases in the functional model. In such situations, the 
least-squares adaptation approach will not work. 
 
4. OBSERVATION NOISE ESTIMATION USING 
DIFFERENCING IN THE TIME DOMAIN 
 

Basically, we try to overcome the three main problems 
of the existing approaches (i.e., lack of a fully populated 
variance-covariance matrix, missing temporal correlation, 
and no observation redundancy in long-baseline 

applications) in our approach. We assume that double-
difference (DD) observation time series are given. 
Hereafter, we will leave out the notation of DD (or ∇∆) 
for the observations, biases and errors. In short-baseline 
situations, the effects of the (correlated) biases are usually 
ignorable. Accordingly, temporal correlation is ignorable 
in estimating the stochastic model because temporal 
correlation reflects mainly the behaviour of the biases 
(although observation smoothing by the receiver will 
introduce some temporal correlation in observation 
noise). However, it should be noted that the effect of the 
double-differenced multipath is not always ignorable even 
in short-baseline situations. In other words, temporal 
correlation may exist depending on multipath 
environments. In long-baseline situations, the biases are 
not ignorable, so that temporal correlation usually exists 
in the observation time series. 

 
To remove the non-random behaviour of the 

observation time series, we use a differencing scheme in 
the time domain including the triple-difference (TD; 
differencing consecutive observations after deleting cycle-
slip spikes), quadruple-difference (QD; differencing 
consecutive TD observations), quintuple-difference (dQD; 
differencing consecutive QD observations), and so on. In 
this approach, we assume that the effects of any biases 
can be canceled in the differencing process, so that only 
the effect of observation noise (assumed as white noise) 
remains in the resulting time series. This assumption can 
be justified as long as we can obtain time series with a 
sufficiently short sampling interval. If the observation 
time series samples are obtained with a smaller time 
interval (i.e., a higher data rate) than the time constant of 
each component of the biases, the assumption can be 
easily satisfied. This reasoning is based on the fact that 
differences are generated by subtractive filters. These are 
high-pass filters damping low frequencies and eliminating 
constant components. High frequency components are 
amplified. 

 
There exist two degrees of freedom in our approach: 

i.e., the order of the differencing and the data rate must be 
determined in terms of optimality. In general, increasing 
the order of the differencing continuously is pointless 
because the time-correlated biases are easily canceled at a 
low order. The dQD differencing is sufficient for almost 
all situations according to our analyses. On the other hand, 
the optimal data rate is usually dependent on particular 
applications such as static, low-dynamics kinematic, and 
high-dynamics kinematic applications. Although 
determining the optimal data rate is more or less arbitrary, 
there is a general rule which can be understood in terms 
of the physics inherent in the differencing process: i.e., 
the data rate should be high enough to make each 
component of the biases temporally correlated. If the 
effects of high-frequency (compared with the data rate) 
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components of the biases are significant in the time series, 
the data rate should be increased to cancel the effects of 
such components in the differencing process. Most 
problematic high-frequency component in our approach is 
the jerk of the geometric range due to moving platform 
dynamics. Taking a look at the problem in terms of a 
numerical process, we can get a better insight into how to 
come up with a solution to the problem. For example, 
consider the L1 carrier-phase dQD observable: 
 

 1 1 1 1s I b nρ τ εΦ = + + − + + +&&&&&&&&& &&& &&&&&& &&& &&& , (1) 
 
where 1Φ  stands for the double-difference L1 

observable; ρ  for the geometric range; s for the satellite 

orbit bias; τ  for the tropospheric delay; I for the L1 
ionospheric delay; b1 for multipath in L1 carrier phase; n 
for the ambiguities (in distance units); and 1ε  for 
observation noise of the L1 carrier phases. Using the one-
dimensional Taylor series including higher-order time 
derivatives for each of the biases, we have 
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where S represents each biases and R is a remainder term 
known as the Lagrange remainder. Assuming that the 
observation time interval is 0( )t tδ = − , we have the 
following dQD observable: 
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where 3( )R t∑  is the effect of dQD for the remainder R. 
Substituting Eq. (3) into (1) gives 
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S t s I b n tρ τ
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Eqs. (4) and (5) clearly show the relationship between 

the high-frequency components and the data rate in the 
differencing process. If the effects of the high-frequency 
components in the right-hand side of Eq. (5) are small 
enough to be ignorable and/or the data rate (1/δ) is high in 
Eq. (4), and if the effect of the second term in the right-
hand side of Eq. (4) (i.e., the effect of dQD for the 

remainder R) is also small enough to be ignorable, we can 
get an acceptable inference as: 
 
 1 1εΦ ≈&&& &&& . (6) 
 

As long as the differencing process satisfies Eq. (6), 
the fully populated variance-covariance matrix for the 
dQD observation noise 1ε&&&  can be easily estimated using 
n dQD samples for each double-difference satellite pair 
time series: 

 

 [ ]ˆ cov=dQDQ dQD , (7) 

 

where ,i jdQD =  dQD ; subscript i stands for a sample 

number (epoch); subscript j identifies a particular double-
difference satellite pair time series number; and  [ ]cov ⋅  

is the variance-covariance operator. Since there exists a 
certain relationship between the original time series and 
the dQD time series as shown in Eq. (3), assuming that 
four consecutive L1 observations have the same variance, 
the fully populated variance-covariance matrix for the 
observation noise also can be estimated: 
 

 
1ˆ ˆ
20

=DD dQDQ Q . (8) 

 
Note that the size of samples n should be determined 

in terms of the unbiasedness of the estimates. In general, 
the larger the size of samples, the better the estimates. 
However, there may be a trade-off to some degree in real-
time implementation. 
 
5. TEST RESULTS 
 

In order to illustrate the performance of our approach, 
it has been tested with data sets recorded in static and 
kinematic modes, and in short-baseline and long-baseline 
situations. Ashtech Z-XII receivers were used to record 
dual-frequency data. The summary of the tests is given in 
Table 1. 
 

Table 1. Summary of the tests 

 
Test 

Mode 
Baseline 
Length 

Data 
Rate 

Remarks 

Test 1 Static 30 m 1 Hz  

Test 2 Kinematic 10 m 1 Hz 
Circular 

motion at low 
speed 

Test 3 Static 80 km 0.1 Hz  

Test 4 Kinematic 80 km 1 Hz 
Driving a car 
at high speed 

 
Firstly, we analyzed the data sets to confirm that the 
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effects of the biases can be canceled in the differencing 
process. For that purpose, we looked at several particular 
observation time series: 1) an ideal time series which 
includes only the observation noise; 2) a time series in 
which multipath is predominant; and 3) a time series in 
which the ionospheric delay is predominant. 

 
The ideal time series with weak multipath was 

obtained from the Test 1 data sets. In static, short-baseline, 
and weak multipath environments, we can expect that the 
effects of the biases are ignorable, so that the time series 
include only the observation noise. But the question is 
how we can judge observations with weak multipath. A 
good indicator for multipath is the C/N0 short-term 
variability. Figure 1 shows the case of weak multipath. 
 
 

 

Figure 1. Elevation angle and C/N0 for a weak 
multipath situation (Test 1). The red line is the C/N0 
for L1(C1) and the blue line for L2(P2). 

 
To justify the inference for the ideal time series, we 

estimated the ionospheric delay change using the L1 and 
L2 TD observations: 
 

 

( )

( ) ( )

1 2
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1
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 (9) 

 

where ( )2

2 1/ 1.65γ λ λ= ≈  and δ indicates a difference 

between consecutive epochs. Since the ionospheric delay 
and multipath are ignorable in the selected situations, the 

ionospheric delay change estimates Îδ  just include the 
combined effects of the L1 and L2 observation noise. 
Figure 2 shows justification for that: i.e., there are no 
significant low-frequency components (e.g., less than 0.1 

Hz) which would reflect the effects of the biases. It is 
more or less arbitrary to define the boundary for the low-
frequency components at this moment. However, we will 
see some reasonable results hereafter. Anyway, we will 
use the results of this “ideal” time series in comparing 
with other time series contaminated by biases. 
 
 

 

Figure 2. Ionospheric delay change of an ideal time 
series and its periodogram (Test 1). 

 
To obtain the time series with strong multipath, we 

selected another time series, which shows a strong 
multipath pattern as shown in Figure 3 (left side), from 
the Test 1 data sets. In this case, we can expect that 
multipath is the only significant bias in the time series. 
 
 

 

Figure 3. Elevation angle and C/N0 for a strong 
multipath situation (Test 1). The red line is the C/N0 
for L1(C1) and the blue line for L2(P2). 
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Using this particular time series, we can confirm that 
the differencing process does cancel the multipath. For 
that purpose, we generated the TD, QD and dQD time 
series as shown in Figure 4. And then, we looked at each 
time series in the frequency domain. As the order of the 
differencing increases, the approximately 3-minute 
spectral component of multipath disappears as shown in 
Figure 5. Although our justification for multipath is 
correct, it is not always the case in kinematic mode. We 
will highlight that point when we discuss the fully 
populated variance-covariance matrix estimation later. 
Our approach allows us to separate, to some degree, the 
effect of multipath “noise” from other effects contributing 
to the overall observation noise. 

 
 

 

Figure 4. Time series with strong multipath (Test 1). 

 
 

 

Figure 5. Cancellation of multipath (Test 1). 

 

To obtain a time series with significant ionospheric 
delay, we took a time series from the Test 3 data sets. In 
static, long-baseline environments, we can expect that the 
effect of the ionospheric delay is still significant after 
double differencing. Furthermore, the effect of it 
increases at a low data rate (0.1 Hz). In addition, the 
selected time series has weak multipath (Figure 6). 

 
 

 

Figure 6. Elevation angle and C/N0 for long-baseline 
weak multipath case (Test 3). The red line is the C/N0 
for L1(C1) and the blue line for L2(P2). 

 
 

 

Figure 7. Example of a significant relative ionospheric 
delay in double-difference observations (Test 3). 

 
We estimated the ionospheric delay for the time 

series using the L1 and L2 observations. In this case, 
the ionospheric delay estimates include true ionospheric 
delay, a constant bias due to L1 and L2 ambiguities, and 
the combined effects of the L1 and L2 observation noise. 
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Figure 7 shows justification for that: i.e., there are 
significant low-frequency components which reflect the 
effects of the ionospheric delay. 

 
Now, we can confirm that the differencing process 

does cancel the effects of the ionospheric delay. Using the 
TD, QD and dQD time series in Figure 8, we investigated 
each time series in the frequency domain. As the order of 
the differencing increases, the frequency components of 
the ionospheric delay disappear as shown in Figure 9. 
 
 
 

 

Figure 8. Time series of the ionospheric delay change 
estimates (Test 3). 

 
 

 

Figure 9. Cancellation of the ionospheric delay (Test 
3). 

 
With respect to the tropospheric delay and satellite 

orbit bias in Eq. (1), we expect similar cancellations to the 

ionospheric delay. Then, the remaining component whose 
cancellation in the differencing process we have to justify 
is the geometric range. In static mode, just satellite 
dynamics dominates the geometric range. On the other 
hand, in kinematic operations it is affected not only by 
satellite dynamics, but platform dynamics as well. 

 
 

 

Figure 10. Time series of the geometric range (Test 3). 

 
 

 

Figure 11. Cancellation of the geometric range (Test 
3). 

 
Figures 10 and 11 illustrate that the differencing 

process can easily cancel the effect of variations in the 
geometric range in static mode. However, it is not the case 
in kinematic mode. In other words, the effect of geometric 
range changes is not easily canceled in kinematic mode 
because the platform dynamics is apt to remove temporal 
correlation between the geometric ranges. Comparing the 
first plots in Figures 10 and 12, that of Figure 10 shows a 
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quite smooth curve that the effect of the geometric range 
variations can be easily canceled in the differencing 
process while that of Figure 12 shows that cannot. 
Consequently, Figure 13 shows justification for the 
assertion that the differencing process cannot cancel the 
effect of the geometric range variations in kinematic 
mode. 

 
 

 

Figure 12. Time series of the geometric range (Test 4). 

 
 

 

Figure 13. Effect of platform dynamics on the 
geometric range (Test 4). 

 
Up to now, we have justified that biases can be 

canceled by differencing in the time domain. We have 
also identified that geometric range variation is a 
problematic component in our approach, particularly 
when the data is recorded at a low data rate (e.g., 1 Hz) in 
kinematic mode. Based on our justification, we estimated 
fully populated variance-covariance matrices for 

observation noise and compared the results with those of 
the C/N0 approach. The following four figures (from 
Figures 14 to 17) show the results. 

 
Several comments should be given to understand 

observation noise estimation figures: First, when we 
estimate observation noise using the C/N0 approach (i.e., 
the top two plots in each figure), we must know at least 
two factors correctly – a conversion equation between the 
receiver’s SNR output and the C/N0, and the signal 
tracking loop bandwidths. We used the published SNR-to-
C/N0 conversion equation for the Ashtech Z-XII receiver. 
However, we did not have available the correct 
information for the signal tracking loop bandwidths. 
Therefore, we used an example value (the same value for 
L1, L2, C1 and P2) given in Langley [1997]. The effect of 
incorrect values for signal tracking loop bandwidths, 
however, just scales the true values. This means that the 
pattern of the original estimates holds. Second, when 
platform dynamics exist, our approach may not provide 
realistic estimates for observation noise depending on the 
data rate as illustrated above. To justify the effect of 
platform dynamics, we estimated observation noise using 
the time series of the geometry-free (GF) linear 
combinations for carrier-phase and pseudorange (i.e., the 
bottom two plots in each figure): 

 

 1 2

1 2

L L L

P C P

GF DD DD

GF DD DD

= −
= −

 (10) 

 
 

 

Figure 14. Observation noise estimation (Test 1). The 
red line is the estimates for L1(C1) and the blue line 
for L2(P2). 
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Figure 15. Observation noise estimation (Test 3). The 
red line is the estimates for L1(C1) and the blue line 
for L2(P2) 

 
Figures 14 and 15 show the estimates of observation 

noise in static mode. Indeed, our approach provides 
realistic estimates either in short-baseline or long-baseline 
situations, at 1 Hz or 0.1 Hz data rates. Interestingly, we 
can see high cross-correlation between the observation 
types in both figures. Furthermore, the estimates of L1 
and L2, C1 and P2 observation noise are not much 
different. At this moment, we cannot explain why we 
don’t see a difference between L1 and L2, C1 and P2 
noise levels. We will investigate this behaviour in our 
future work. As was expected, the estimates of our 
approach are not much different from those of the GF 
combination in static mode. 

 
 

 

Figure 16. Observation noise estimation (Test 2). The 
red line is the estimates for L1(C1) and the blue line 
for L2(P2) 

 

 

Figure 17. Observation noise estimation (Test 4). The 
red line is the estimates for L1(C1) and the blue line 
for L2(P2) 

 
However, we can see the effects of platform dynamics 

in the estimates of our approach in kinematic mode 
(Figures 16 and 17): i.e., the estimates of our approach are 
highly affected by platform dynamics. Looking at the GF 
plots for carrier-phase observations, the effect of the 
platform dynamics is very clear. Meanwhile, it is not so 
clear for pseudoranges because the effects of platform 
dynamics are buried in the pseudorange observation noise. 

 
Finally, we need to mention the effect of multipath in 

kinematic mode. It is not difficult to imagine that a 
moving platform can change the geometry of multipath. 
Depending on the platform dynamics, there may be rapid 
changes of the geometry, so that temporal correlation of 
multipath can be removed. This decorrelation cannot be 
canceled even in the GF linear combinations. The patterns 
in the GF plots illustrate that.  
 
CONCLUSIONS 
 

In our new approach, we have tried to overcome the 
three main problems of existing approaches in 
determining the stochastic model for GPS observations – 
lack of a fully populated variance-covariance matrix, 
missing temporal correlation, and no observation 
redundancy in long-baseline applications. 

 
A general conclusion about our investigations is that 

temporal correlation in biases can be eliminated by 
differencing observations in the time domain as long as 
observation time series are highly time-correlated. This is 
the fundamental idea in our approach. Then, there might 
be a question: i.e., how can we obtain highly time-
correlated observation time series? There is a general rule 
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which can be understood in terms of the physics inherent 
in the differencing process: i.e., the data rate should be 
sufficiently high to make each component of the biases 
temporally correlated. If the effects of high-frequency 
(compared with the data rate) components of the biases 
are significant in the time series, the data rate should be 
increased to cancel the effects of such components in the 
differencing process. The significance of the conclusion is 
that there is just one degree of freedom for obtaining 
realistic noise estimates and that we can control it. 

 
In static mode, conventional data rates (e.g., 1 Hz or 

0.1 Hz) are sufficient to obtain realistic estimates for the 
observation noise. However, we have to increase the data 
rate in kinematic mode. In this case, the most problematic 
high-frequency components are the jerk of the geometric 
range and multipath due to the moving platform dynamics. 
Fortunately, high data rate receivers (e.g., 10-50 Hz) are 
available on the commercial market. If we can use such 
receivers, it is easy to implement a routine procedure to 
estimate observation noise in data processing software.  
 

Another conclusion related to our future work is that 
we can consider a fusion of the C/N0 approach and ours. 
For example, we can use our approach as a tuning process 
for the C/N0 approach because our approach provides 
realistic noise estimates in static mode or at a high data 
rate. We can also use the C/N0 approach as a monitoring 
process for our approach because our approach is 
degraded by platform dynamics while the C/N0 approach 
is not. 
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