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ABSTRACT

In GPS carrier phase integer ambiguity search methods,
the number of ambiguity candidates to be searched and
verified can be an important factor for the performance of
ambiguity resolution and computational efficiency. The
key question in assessing such methods is by how much
and with what efficiency can the number of candidates be
reduced before or at the search-verification step. The most
effective procedure can be found in such techniques as a
search space (or domain) transformation and an ambiguity
candidate filtering (or conditioning) in multi-search
levels.

An Optimal Method for Estimating GPS Ambiguities
(OMEGA) that enables very high performance and
computational efficiency has been developed and
demonstrated. This method employs two search space
reduction processes – a scaling and a screening process –
that are related to the search space transformation and the

ambiguity candidate filtering in multi-search levels. To
obtain the highest efficiency, an optimization procedure,
which decides the parameters to minimize the candidates
under given conditions, is implemented in closed-form
before the search-verification step.

The method is essentially based on the least-squares-
approach originally proposed by Hatch but uses a
modified and more efficient process. The simple test
results reported in this paper have shown that
computational efficiency is improved by about 90% when
compared with that of the basic least-squares-approach.

INTRODUCTION

In navigation and surveying systems using GPS carrier
phase data, of great concern are the performance of
ambiguity resolution and computational efficiency. These
parameters are often traded off in designing the system.
One possible way to overcome the trade-off is to reduce
the number of ambiguity candidates before or at the
search-verification step. The search space transformation
[Abidin, 1993; Teunissen, 1994; Martin-Neira et al.,
1995] and ambiguity candidate filtering in multi-search
levels [Chen and Lachapelle, 1995; Teunissen, 1997] are
effective techniques for that purpose.

When we use a process similar to the least-squares-
approach of Hatch [1990] at the search-verification step,
it is possible to implement optimization procedures
reducing the number of candidates before implementing
the step. We will show that this can be achieved using the
design matrix of the linearized double-difference
observables. The aim of this paper is to describe the
theoretical concepts of a new on-the-fly ambiguity
resolution technique – OMEGA (Optimal Method for
Estimating GPS Ambiguities).

The GPS Observables

To simplify discussions we will assume that the float
estimates of ambiguities and their error models are given.



For the double-difference observables recorded on short
baselines, the satellite and the receiver clock biases are
removed, and the residual atmospheric effects are
negligible.  Ignoring multipath, we have

[ ] [ ]E Cov

l = Ax + N + e

e = 0, e = Q
(1)

where l is the nx1 misclosure vector of the difference
between the double-difference observations and their
estimates; n is the number of the double-difference
observations; x is the 3x1 vector of the unknown remote
station position components; A is the design matrix for
the unknown position; N is the nx1 vector of ambiguity
parameters; e is the nx1 vector of the double-difference
observation noise; E[�] and Cov[�] represent the
mathematical expectation and the variance-covariance
operators.

The Modified Least-Squares-Approach

Using the same terminology as Hatch [1990], we
outline the modified process for the least-squares-
approach in Table 1. In the computational equations, the
subscripts of  “p” and “s” represent the primary and the
secondary group of satellites; and round[�] is the rounding
to the nearest integer operator.

When compared with the original least-squares-
approach using the double-difference observable (more
details in Erickson [1992]), the new process gives exactly
the same residuals. It is possible however, for the
modified process to employ search space reduction
processes when an optimal estimation problem for the
secondary innovations vector is considered.

Table 1. Summary of the modified least-squares-
approach.

Processing steps Computational equations

Potential solutions 3Z∈-1
p p p px = -A N , N

Secondary ambiguities round =  
-1

s s s p p pN l - A A (l - N )

Innovations vector
′
′
p p

-1
s s s p p s

l = l
l = l + A A N - N

Residuals
′

′ ′ ′  
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TT T
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A = (A Q A) A Q
l = l l

THE SEARCH SPACE REDUCTION PROCESSES

When we compute the residuals using the equations in
Table 1, the only variable parameter is the secondary
innovations vector. In accord with the least-squares

principle, the optimal estimate for the secondary
innovations vector is given as:

ˆ′ -1
s s p pl = A A l (2)

We can recognize that the optimal estimate is
independent of the search-verification step, since it is
derived by the design matrix and by the misclosure vector
for the primary group. These parameters are constant in a
snapshot (i.e., single epoch) approach, such as the least-
squares-approach.

The significance of the optimal estimate is that it can be
used in the derivation of the scaling and screening
process.

The Filter for the Secondary Innovations Vector

To derive the scaling process, we will define the filter
using the optimal estimate as:

, 1,2, , 3i iw i nτ≤ = −� (3)

with a filter equation:

ˆ

round

′ ′

 −  

s s

-1 -1
s s p p p s s p p p

w = l - l

= l - A A (l - N ) l - A A (l - N )
(4)

and where τi is the threshold for observation i which is
derived from the error model of the filter equation. In
general, the ellipsoidal region in 3nR − centered at the
estimate ̂x  of a certain vector x can be expressed as:

2
ˆˆ ˆ χ≤T -1
x(x - x) Q (x - x) (5)

where 2χ  is a positive constant which can be determined

from the probability distribution of x; and x̂Q  is the

variance-covariance matrix of x̂ . One simple way to set
the threshold is

2
i iτ σ χ= (6)

where iσ  is the square root of the ith diagonal element in

x̂Q .

Table 2. Error models for the filter thresholds.

x̂ x̂Q

sl ssQ
-1

s s p pl - A A l -1 -T T -1 -T T
ss s p pp p s s p ps sp p sQ + A A Q A A - A A Q - Q A A

-1
s p pA A l -1 -T T

s p pp p sA A Q A A



We have tested three error models for the filter
thresholds in Table 2: (a) the first represents a wrong error
model; (b) the second is the case that the filter equation
can be interpreted as a real-valued vector minus its integer
estimate; and (c) the third error model is based on the fact
that the secondary innovations vector can be predicted
using the optimal estimate. Figure 1 shows the
performance of the filter thresholds for each error model.

In each error model, the variance-covariance matrices
with subscripts are the sub-matrices partitioned from that
of the double-difference observations in equation (1).

We need in general an error model that protects all the
values of the filter equation for true ambiguities, which is
also efficient. The third error model clearly satisfies these
criteria as shown by the examples in Figure 1.

Figure 1. Performance of the filter thresholds for the filter equation.

The Scaling Process

For simplicity, we will consider equation (4) as:

round ∇ − ∇ p pw = SN + SN + (7)

where

∇

-1
s p

s p

S = A A

= l -Sl
(8)

Using the terms in equation (7), we can define an
integer transformation and an inverse transformation as:

( )round f round   = = ∇  I p pd N SN + (9)

( )g round τ = = ∇ 
*

p I IN d S (d - + ) (10)

where *S is the generalized inverse matrix of S. The
necessary and sufficient condition that the inverse
transformation exists is

[ ] dim[ ]rank ≥ pS N (11)

where rank[�] and dim[�] are the rank of a matrix and
the dimension of a vector.

As shown in Figure 2, the function f in equation (9)
represents a linear transformation from the ambiguity
candidate domain onto the range space scaled by the
factors in S. This function holds a one-to-one mapping
relationship for all the candidates; therefore, there is no
scaling effect. The practical scaling effect can be gained
by the rounding operation. In this case, the mapping
relationship is changed into many-to-one for all subspaces
in the ambiguity candidate domain, where the subspace is
defined as the group of ambiguity candidates which can
be transformed to the same Id . It is possible, therefore, to
estimate the bounding search range of the scaled search
space as:

round round   ∇ ≤ ≤ ∇   p I p- | S | W + d | S | W + (12)
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where pW  represents a vector for pN  which includes the

predefined search ranges.
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Figure 2. Diagram of the scaling process.

The inverse linear transformation g in equation (10)
recovers all the candidates satisfying equation (3). In this
case, the scaling effect gained from equation (9) can be
affected by the factor *S ττ . This factor can be considered
as a magnification factor, because it usually magnifies the
scaled search space. This is why we need a more efficient
error model for the filter thresholds.

The Screening Process

Previous studies utilizing the inner constraints of the
multi-search levels [e.g. Chen and Lachapelle, 1995;
Teunissen, 1997] have shown that the ambiguity
parameters of lower search levels can be conditioned on
those of upper search levels. The screening process,
which can be derived from the definition of the optimal
estimate, has similar features.

To derive the screening process, we rewrite equation (2)
using the scaling matrix as:

ˆ′s p 1 p1 2 p1l = Sl = S l + S l (13)

where the subscripts of “1” and “2” are the indicators of
partitioned matrices and vectors. The first partitioned
vector is given as:

0
p1 p1 p1l = N - N� (14)

where p1N�  is the vector of float ambiguities and 0p1N  is

the vector of the integer estimates. When the first
partitioned vector is known, we can express equation (13)
as:

ˆ′ F
s 1 p1 2 p2|1l = S l + S l (15)

with the known vector:

F F
p1 p1 p1l = N - N� (16)

and where p2|1l  represents the unknown vector

conditioned on the known values of the first partitioned
vector; and F

p1N  is the vector of the known ambiguity

parameters.

It is possible therefore, to derive a relational equation
for the unknown conditioned vector. Using the equality of
equation (13) and (15), we have

*
p2|1 p2 2 1 p1l = l + S S N (17)

where
* T -1 T
2 2 2 2

F 0
p1 p1 p1

S = (S S ) S

N = N - N
(18)

We can recognize that the unknown conditioned vector
can be shifted; and the shifting quantity depends on the
matrix S and the known ambiguity parameters. The
variance-covariance matrix of equation (17) is given as:

Cov Cov   =   p2|1 p2l l (19)

Figure 3 shows that this process is simply screening the
predefined search space in accord with equation (17). The
bounding search range of the screened search space can
be estimated as:

max min   ≤ ≤   p2 p2|1 p2 P2|1 p2 p2|1 p2-W , l - W N W , l + W (20)
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p2|1lScreening Effect =

Figure 3. Diagram of the screening process.



THE OPTIMIZATION PROCEDURES

There are three parameters for reducing the search
space: the scale factor S and the magnification factor τ*S
in the scaling process, and the shifting quantity *

2 1 p1S S N

in the screening process. As we can notice, these
parameters are related to the matrix S. To obtain an
optimal solution, we can define an objective function –
the total search space volume as:

3

1

2 i
i

W
=

Ω = ∏ (21)

where Wi is the search range to be redefined at the ith

search level and the number of the search levels is given
as 3, which comes from the dimension of the ambiguity
parameters vector. To optimize the objective function,
two schemes can be employed for these parameters: the
scheme of grouping the satellites into primary and
secondary satellites, and the manipulating scheme of
matrix S, including ordering, partitioning, and
dimensioning.

Optimization of the Matrix S

Regarding the satellites grouping scheme, Hatch [1990]
proposed choosing four satellites that have a reasonably
good GDOP as the primary group. It is possible however,
to decide the grouping in the optimization problem –
finding any parameter to maximize the scaling effect or to
minimize total search space volume.
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total search space volume: (a) objective function 1Ω
for the scaling effect, (b) modified objective function

2Ω  for the scaling effect, (c) objective function 3Ω  for
the filter thresholds, and (d) magnification factor M .

For simplicity, we will assume that all search levels
have a predefined search range of the same size pw .

Using the elements of the matrix S, we can express the
scaled search range as:

3

1
i p ij

j

W w s
=

= ∑ (22)

Substituting equation (22) into (21) and ignoring
constant value 38 pw  give

3 3

1
11

ij
ji

s
==

 
Ω = ∝ Ω 

 
∑∏ (23)

To derive a matrix expression, we can define a modified
objective function as:

3 3
2

2
1 1

ij
i j

s
= =

 
Ω =  

 
∑ ∑ (24)

It can be proved that any parameter minimizing

2Ω minimizes 1Ω , but the inverse is not the case. We
have therefore,

2
2 tr tr RDOP   Ω = ∝ ≅   

T T -1
p pSS (A A ) (25)

where tr[�] is the matrix trace operator, and RDOP
represents the relative dilution of precision to assess the
geometrical strength of the actual satellite configuration
for relative positioning [Seeber, 1993].

In the inverse transformation of equation (10), the total
search space volume can be affected by the magnification
factor *S ττ . When the same value is assumed for the filter
thresholds, we have the magnification factor as:

{ }
3 3

3 *

11

n n
n

ij
ji

M sτ
− −

−

==

   = ⋅   
   

∑∏ (26)

where we have separated the effect of the filter thresholds
and the inverse matrix *S using brackets for clarity. For
the best RDOP, the inverse matrix *S  takes the opposite
effect to equation (23). To see the effect of the filter
thresholds, we can take the trace operation for the error
model of (b) or (c) in Table 2. We have therefore,

[ ] 2
ˆ3 tr tr RDOP Ω = ∝ ≡ 

T -1 -1
x p pp pQ (A Q A ) (27)

It is evident that there is a sort of cancellation effect
between the filter thresholds and the inverse matrix *S  in
this process. We can say therefore, that the four satellites



with the best RDOP give the largest scaling effect. Figure
4 shows that the smaller the RDOP value, the smaller the
objective function and the magnification factor.

Ordering of the Matrix S

Ordering is the procedure of deciding the order of the
search levels and the secondary observations. This
scheme is used to search all possible combinations in the
matrix S. Using an explicit matrix-vector expression, we
can rewrite the filter equation of equation (7) as:

1

1

2

2

3

3

11 12 131 1

21 22 232 2

3,1 3,2 3,33 3 n

I

p
I

p

p
In n nn n

ds s sw
N

ds s sw
N

N
ds s sw

−− − −− −

∇             ∇       = + −                ∇            

��� �
(28)

There are two swapping rules: First, if the columns of
the matrix S are swapped, the order of the elements in the
ambiguity parameter vector pN  should be changed in

accord with the swapped order; in this case, there is no
change of the column vectors – ,w ,∇  and Id . Second, if
the rows of the matrix S are swapped, the order of the
elements in the column vectors should be changed
according to the swapped order; there is no change in the
ambiguity parameter vector.

Partitioning of the Matrix S

The screening process of equation (17) is related to the
partitioned sub-matrices 1S  and 2S . The partitioning
scheme is used therefore, to implement the screening
process. The rule for this scheme is that the matrix S
should be partitioned in the column direction. We can
consider three patterns in Table 3.

Table 3. Patterns of the partitioning scheme.
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The first pattern is not for practical implementation, but
for general expression. The second represents the case
that the ambiguity parameters in the first search level are
known. When the ambiguity parameters in the first and
second search levels are known, the third pattern is used.

Dimensioning of the Matrix S

The dimensioning scheme is considered for the scaling
process. In the integer transformation defined as equation
(9), the number of the transformed search levels (i.e., the
dimension of Id ) is given as n-3. Under the condition of
equation (11), the minimum dimension can be obtained as
3 if and only if we use a square-matrix S with rank 3,
where the number 3 comes from the dimension of the
ambiguity parameters vector.

Considering the situation when the scaling process is
implemented in the multi-search levels, the dimension of
the unknown ambiguity parameters vector will be
changed according to the search levels; therefore, we need
to adjust the square-matrix S in accord with the
dimension. This means that a square sub-matrix subS  is
chosen from the matrix S. In general, the dimensioning
scheme has priority over the partitioning scheme. We can
consider three patterns in Table 4.

Table 4. Patterns of the dimensioning scheme.

1 2 3

11 12 13

21 22 23

31 32 33

sub

s s s

S s s s

s s s

 
 =  
  

12 13

22 23
sub

s s
S

s s
 

=  
 

13subS s=

The following describes practical implementation
methods that can be considered in the optimization
procedures:

Method 1: Choose the first dimensioning pattern. In this
case, only the first pattern of the partitioning
scheme is available; therefore only the scaling
process can be used. The advantage of this
method is that the scaled search space can be
defined independently before the search loops.
The scaled search space is however, not larger
than the predefined search space. This method
is not practical but conceptual.

Method 2. Choose the second dimensioning pattern. In
this case, the first and second patterns of the
partitioning scheme are available and the first
search level is set using the predefined search
range. Using all the ambiguity candidates in
the first search level, the screening process is
implemented to the second and third search
levels. And then, the scaling process is
implemented for the screened search ranges.
Although this method utilizes both search
space reduction processes, the reduction effect
is not large.



Method 3. Choose the third dimensioning pattern. Then
all the patterns of the partitioning scheme are
available. In this case, the first search level is
set using the predefined search range. Using
all the ambiguity candidates in the first search
level, the screening process is implemented at
the second search level. And then the third
search level is screened using all the screened
ambiguity candidates in the second search
level. Finally, the scaling process is applied to
the third screened search level. This method
has shown the best results in our
investigations. Although we must implement a
few computational steps at the second and
third search levels, it does not deteriorate the
efficiency of this method; in fact, the reduction
effect is much more predominant.

Optimization Procedures Implementation Fundamentals

As mentioned earlier, the purpose of the optimization
procedures is to find the parameter that minimizes the
number of ambiguity candidates before the search-
verification step where the scaling and screening
processes are implemented. This parameter is given as a
reordered matrix S. Figure 5 shows these procedures.
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Figure 5. Ambiguity search-verification step
augmenting the optimization procedures.

We will consider the situation for example, that nine
satellites are observable. Then we have eight double-

difference observations: three for the primary group and
five for the secondary group; therefore the dimension of
the matrix S is 5x3, where the number of the unknown
parameters is 3. In this case, we have 30 combinations by:
6 column-order sets, and 5 redundancies of the
observations. To find optimal parameters we have to
estimate the total search space volume for each
combination. Based on our investigations, we will
implement method 3 in the optimization procedures.

The first step of the estimation is finding all ambiguity
candidates that belong to the search plane generated by
the first and second search levels that pass through the
third search level. This can be done easily on account of
the linearity of equation (17).
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It is clear in Figure 6 that the number of ambiguity
candidates N, can be estimated as the dotted area when
the slope a, and two y-axis intersections b1 and b2 are
given. From equations (17) to (20), we have:

1

1 2 2 2

2 2 2 2

max ,

min ,

p p p

p p p

a

b W l W

b W l W

 =  
 = − − 
 = + + 

*
2 1S S

(29)

where the slope a is the first element of the vector *
2 1S S

given by the second pattern of Table 3.

As the next step, we have to estimate the screened and
scaled search range at the third search level using all the
ambiguity candidates N. It is impractical however, to
estimate the search range using all the ambiguity
candidates. Instead, we have used representative



ambiguity candidates, which are the ambiguity candidates
on the line: 

2
0pN = . For each candidate, the screened

search range is given by:
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In equation (31), the vector *2 1S S  follows the third
pattern of Table 3. Applying the scaling process for this
screened search range gives:

[ ] [ ]13 31 3 13 32| | | |Iround s d round sϖ ϖ≤ ≤ (32)

It is possible therefore, to estimate the mean value h of
the screened and scaled search ranges for all the
representative ambiguity candidates. The final step is
estimating the magnification factor as:

* 3
13 3

13

2 | | 2m s
s

ττ
 

= =  
 

(33)

The estimate of total search space volume is therefore,
given as:

V N h m= ⋅ ⋅ (34)

For all combinations, we can estimate the total search
space volumes. The optimal solution is given therefore, as
the reordered matrix S that gives a minimum volume.

Figure 7. Double-difference residuals: (a) in static mode, and (b) in kinematic mode.

RESULTS

To illustrate the success of the method, we present two
sets of sample results. The first data set contains both L1
and L2 observations recorded at a fifteen second sampling
interval in static mode and the second data set contains
the same observations at a one second sampling interval
recorded in kinematic mode. In both modes, the data were
obtained on very short baselines to investigate the
performance and computational efficiency of the method
without considering a correct observable noise model.
The matrix S that is independent of the observable noise
is in fact, the most significant parameter of the method.
Because the baselines were so short, only L1 data were
used in the analysis.

Ambiguity Resolution Performance

To test the performance of ambiguity resolution, we
used a snapshot approach – estimating integer ambiguities
epoch by epoch. Of the data recorded in static mode, 96
samples (i.e. observations over 1,440 seconds) with nine
satellites were processed. For the data recorded in
kinematic mode, 146 samples with eight satellites were
processed. The success rate in identifying the correct
ambiguity values of these examples was 100%. This
performance is mainly due to the low noise level and high
redundancy of the double-difference observations. Figure
7 shows double-difference residuals after the least-squares
adjustment in both modes. Almost every plot has a
distinct trace indicating the low noise level of the double-
difference observable.
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We have not quantified for now, the contribution of the
method in the performance (i.e., success rate) of
ambiguity resolution. It is evident however, that the
method does help in the decision process of correctly
identifying the ambiguity candidate through search space
reduction. This will be investigated further in on-going
research.

Computational Efficiency

Comparing with the standard least-squares-approach,
Figure 8 shows the general improvement gained by the
search space reduction processes. Figure 8(a) represents
the search space and computational time reductions in
static mode. In this example, the predefined search range
is approximately 2 meters; therefore the number of
ambiguity candidates is about 8,000. The differences
between the search space and computational time
reduction result from the additional computations
implemented into the search-verification steps. Figure

8(b) shows the search range reduction at each search
level. There is no reduction at the first search level. The
reduction at the second search level is due to the
screening process. It is up to 30% in this example. On the
other hand, the third search level has more than an 80%
reduction in the number of candidates because of both the
screening and the scaling processes. Our investigations
have shown that the scaling process gives much more
reduction than the screening process.

Figure 9 and 10 show the improvement in accord with
search range size and confidence level for the filter
thresholds. As the search range size is increased, the
improvement tends to converge to around 90%.
Considering the results for the confidence levels, Figure 9
and 10 show that the more efficient the error model for
the filter thresholds, the more the improvement of the
search space reduction.

Figure 8. Computational efficiency compared with the least-squares-approach: (a) search space and computational
time reduction, and (b) search range reduction at each search level.

Figure 9. Computational efficiency in processing the static data according to search range size and assigned
confidence level for the filter thresholds: (a) search space and (b) computational time reduction.
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Figure 10. Computational efficiency in processing the kinematic data according to search range size and assigned
confidence level for the filter thresholds: (a) search space and (b) computational time reduction.

CONCLUSIONS

We have attempted to describe in this paper the main
features of a new OTF ambiguity resolution method:
First, two search space reduction processes – the scaling
and the screening process – can be derived by the optimal
estimate for the secondary innovations vector, where the
optimal estimate is determined using the constant
parameters (i.e., the initial misclosure vector and the
design matrix) in the snapshot approach. Second, when
considering the situation that both processes are
implemented in the search-verification step, the optimal
parameter that minimizes total search space volume is the
best RDOP. Third, total search space volume is changed
according to search levels and the order of the secondary
observations; therefore, it is possible to find an optimal
solution in the optimization procedures, and it is given as
a reordered matrix S.

Problems were encountered with the general reliability
of the optimization procedures, since the procedures
estimate total search space volume without counting all
ambiguity candidates. The key question in this respect is
how accurately the volume can be estimated. The most
difficult part is estimating the search range at the final
search level. By estimating the mean search range at the
third search level using the representative candidates, we
are assuming that the difference from the actual search
range at this level is negligible.

The work reported in this paper has been only a
preliminary study and further investigations are required
to study error models for the filter thresholds and the
contribution of the method to the overall ambiguity
resolution performance. New investigations could include
more efficient computational algorithms in the search-
verification step.
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