The residual tropospheric propagation delay: How bad can it get?

J. Paul Collins and Richard B. Langley
pcollins@unb.ca; lang@unb.ca

The Satellite Division Of The Institute of Navigation
11th International Technical Meeting
Nashville, Tennessee
September 15-18, 1998
Introduction

• Aim: to quantify the maximum possible error for tropospheric delay models.
• Specifically: for wide area differential GPS users,
 – who must determine their own tropospheric delay,
 – who maybe in a “position critical” environment,
 e.g. WAAS final approach.
• Types of model tested:
 Altshuler → “first generation” navigation model,
 UNB1 → “constant value” model based on U.S. Standard Atmosphere,
 UNB3 → table of parameters interpolated over latitude and day of year
 (current WAAS-user model),
 UNB3(SfcMet) → same model supplied with recorded meteorology
 (surface mets. – pressure, temperature, humidity).
Methodology

• Processed 10 years of North American radiosonde data, from 1987–1996.

• Between 151 and 197 stations per year, operating in Canada, the U.S.A., Mexico, the Caribbean and Central America.

• Approximately 100,000 profiles per year, ~1,000,000 in total.

• Tropospheric delay model values at the zenith are subtracted from the zenith ray-trace values to give the residual tropospheric delay and model error.
Residual Distribution (1)

Altshuler
(mean = 16cm, stdev = 8cm)

UNB1
(mean = 2cm, stdev = 9cm)
Residual Distribution (2)

UNB3(SfcMet)
(mean = 0 cm, stdev = 3 cm)

UNB3
(mean = −2 cm, stdev = 5 cm)
Model Results, Average Conditions

- First-generation models performance can be poor.
- Constant-value models can give zero-mean performance, but standard deviation is large.
- UNB3 models have very good “average” performance:
 \[\text{UNB3} \rightarrow \text{mean} = -2 \text{ cm}, \text{standard deviation} = 5 \text{ cm}, \]
 \[\text{UNB3}(\text{SfcMet}) \rightarrow \text{mean} = 0 \text{ cm}, \text{standard deviation} = 3 \text{ cm}. \]
- Both can be reasonably represented by a zero-mean Normal distribution up to \(\pm 4\sigma \) (\(\sim \pm 20 \text{ cm} \)).
- Real-time met. inputs degrade performance, especially in the lower tail:
 \[\text{UNB3} \rightarrow 72 \text{ residuals greater than } \pm 20 \text{ cm}, \]
 \[\text{UNB3}(\text{SfcMet}) \rightarrow 106 \text{ residuals greater than } \pm 20 \text{ cm}. \]
Seasonal Trend Of Extremes

Positive Extremes (cm)

Negative Extremes (cm)

Day-of-year

1 - 03125 F - 14898
2 - 03131 G - 14918
3 - 03879 H - 21001
4 - 03937 I - 21101
5 - 03940 J - 22103
6 - 03948 K - 22104
7 - 04734 L - 23154
8 - 11641 M - 23230
9 - 12919 N - 92803
A - 13601 O - 93116
B - 13840 P - 93214
C - 14684 Q - 93223
D - 14685 R - 93734
E - 14733 S - 94983

Geodetic Research Laboratory, Department of Geodesy and Geomatics Engineering, University of New Brunswick.
Positive And Negative Order Statistics

Year

Positive Extremes (cm)

Negative Extremes (cm)

Geodetic Research Laboratory, Department of Geodesy and Geomatics Engineering, University of New Brunswick.
Statistical Predictions

Positive Extremes

Return Period (years)

- Zenith Delay Error (cm)
 - Frequency (year⁻¹)
 - Reduced Variate (Frechet Distribution)

Negative Extremes

Return Period (years)

- Zenith Delay Error (cm)
 - Frequency (year⁻¹)
 - Reduced Variate (Weibull Distribution)

Geodetic Research Laboratory, Department of Geodesy and Geomatics Engineering, University of New Brunswick.
UNB3 Model Results, Extreme Conditions

• Use ±20 cm as “non-extreme” cut-off range for UNB3 zenith model error.
• 72 residuals (extremes) outside this range, ~0.007% (99.99288% within this range).
• Beyond −4σ, Normal distribution is conservative (residuals appear to level off).
• Beyond +4σ, Normal distribution is unreliable (residuals diverge significantly).
• Negative extremes limited by magnitude of wet zenith delay (~27 cm).
• Positive extremes predict ~58 cm error once every 25 years, on average.
Impact On Vertical Position Determination

Zenith delay error = 21 cm, Brownsville, Texas, Stn. no. 12919.
Summary

• Weighted solution reduces unweighted solution vertical biases by between one- and two-thirds to the metre, or sub-metre level.

• Height error approximately equal to error on lowest elevation satellite in an unweighted solution.

• Bias of weighted GPS solution tends to unweighted bias if satellites are concentrated at approximately the same elevation angle.

• VDOP is not a good indicator of vertical bias.

• Hence, a “rule of thumb”: maximum possible height bias due to the residual tropospheric delay
 \[= 10 \times \text{zenith error}, \text{where } 10 \approx 5^\circ \text{ mapping function.} \]
Conclusions

• Fortunately, things don’t get “too bad” too often,
 – as long as a good model is used,
 – i.e. one that accurately models latitude and seasonal
dependence of the tropospheric delay.

• No improvement from real-time mets. because of
 problems representing atmospheric water vapour.

• But, potential exists for height biases on the order of
 several metres or more, due to mis-modelled
tropospheric delays alone.

• More processing (i.e. at least a further 10 years of
 data) is required to improve confidence in statistical
forecasts of maximum error.