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ABSTRACT

In post-processing dual frequency GPS carrier phase
data, the residual tropospheric delay can easily be the
largest remaining error source.  This error can contribute
a bias in height of several centimetres even if
simultaneously recorded meteorological data are used.
This shortcoming is primarily due to the poor
representation of the water vapour profile in the
tropospheric delay models.  In addition, a lack of real-
time meteorological data would force the scaling of either
surface values or standard atmosphere values, neither of
which are likely to accurately represent the ambient
atmosphere.

To obtain the highest precision in kinematic GPS some
advantage may be obtained by estimating the residual
tropospheric delay along with the position of the moving
platform.  The simple tests reported in this paper
removed biases of upto ten centimetres in height when

estimating the residual tropospheric delay from GPS data
recorded at an aircraft in flight.  However, important
limitations exist in the geometry of the satellite coverage
which must be considered before the full reliability of the
technique can be assessed.

INTRODUCTION

This paper describes an investigation into the
estimation of the residual tropospheric delay from GPS
signals.  This parameter is the remaining part of the
tropospheric delay not predicted by empirical models.  In
post-processed dual frequency carrier phase data, it can
easily be the largest remaining error source.

Unlike most applications of this technique, where the
receiver is static, we have used data recorded at an
aircraft in flight.  This idea was motivated by the fact
that highly accurate aircraft positions are required for
gravimetric, altimetric and photogrammetric surveying
purposes.  Increasingly, GPS is being used to provide the
decimetre-level accuracy required for some of these
techniques.  This level of precision can be achieved using
carrier phase observables, but we will show that
unmodelled tropospheric effects could potentially
contribute a bias of a similar magnitude.

The Tropospheric Delay

An electromagnetic signal propagating through the
neutral atmosphere is affected by the constituent gases.
The fact that the refractive index is slightly greater than
unity  gives rise to a decrease in the signal’s velocity.
This increases the time taken for the signal to reach a
GPS receiver’s antenna, increasing the equivalent path
length (both effects are often referred to as the “delay”).
Refraction also bends the raypath and thereby lengthens
it, further increasing the delay.  Because the bulk of the
delay occurs within the troposphere, the whole delay is
often referred to solely as the “tropospheric delay”.
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By assuming that the neutral atmosphere is both
horizontally stratified and azimuthally symmetric, the
tropospheric delay can be modelled in two parts: the
delay experienced in the zenith direction and the scaling
of that delay to the delay experienced at the zenith angle
of the raypath.  The functions that undertake the scaling
are usually termed mapping functions, although obliquity
factor is sometimes used.  This leads to the common
formulation of zenith delays and mapping functions seen
in the space geodetic literature.  The typical formulation
of the tropospheric delay is described as:
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where at the antenna of receiver i, the delay on the signal
from satellite k is a function of the delays in the zenith
direction caused by the atmospheric gases in hydrostatic
equilibrium and by those gases not in hydrostatic
equilibrium (primarily water vapour), t hydi
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functions are usually described as functions of the
satellite elevation angle ± the complement of the zenith
angle.

For simplicity, we will consider equation (1) as:
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When processing GPS observations, a value for the
tropospheric delay is predicted using empirical models
which in general must be provided with values of the
ambient temperature, pressure and relative humidity.
Unfortunately, even with accurate values, these models
rarely predict the true delay with a high degree of
accuracy.  In theory, the hydrostatic component of the
delay can be predicted in the zenith to the millimetre
level, however the highly variable nature of atmospheric
water vapour means that the accuracy of the non-
hydrostatic delay is at the centimetre, or even decimetre
level.

In addition, when recording GPS data at an aircraft, it
is often the case that no meteorological information is
recorded at the same time.  When processing this data,
assumed meteorological values must be used, and in
addition to the poorly modelled wet component, there

could also be a bias contributed by the hydrostatic
component.  The recovery of these errors is the aim of the
techniques presented here.

The GPS Observables

Because of its high precision and low noise
characteristics we used the GPS carrier phase
observations.  In general, the pseudorange measurements
are too noisy to allow for the accurate estimation of the
tropospheric delay.  To remove the bias of the satellite
and receiver clocks we have used the double-difference
observable.  Ignoring multipath and noise, we have
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where ρ represents the differential geometric range
between satellites k and l  and stations i and j; T is the
differential delay caused by the troposphere; I is the
differential delay caused by the ionosphere; λ is the
carrier frequency wavelength; and N is the differential
integer cycle ambiguity.

The differential ionospheric delay can be removed from
equation (4) by using dual frequency data with the
standard inter-frequency combination.  The double-
difference integer ambiguity term must also be resolved
by some suitable method.  It is important that the
ambiguities then remain fixed for the solution to be
consistent.  For this reason, it is important that the
carrier phase data be free from cycle-slips and data gaps.

THE RESIDUAL TROPOSPHERIC DELAY

There are two ways of estimating the residual
tropospheric delay: either as a scale factor, s; or as a
residual zenith component, rz:
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where we have dropped the zenith delay and mapping
function parenthetical labels for clarity.

By restricting the residual error to the zenith delay, we
are assuming that there are no errors in the mapping
function.  This is obviously untrue, however recent
mapping functions such as those of Niell [1996] have
been shown to be very accurate and any remaining error
will likely come from unmodelled atmospheric gradients
and azimuthal asymmetry.  In theory these gradients can
also be modelled, however, our data may not have the
sensitivity to detect them.
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Modelling Considerations

The differential tropospheric delay is given by:
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which, because the zenith delay at a particular station
will be the same for satellites l and k, can be written as:
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Estimating a station dependent scale factor, s, gives:
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with partial derivatives for a least-squares adjustment:
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which are the between-satellite single difference
tropospheric delays.  Estimating a residual zenith delay,
rz gives:
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with partial derivatives:
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which are the differential mapping functions.

Condition of the Normal Equations

Previous studies of estimating the tropospheric delay
from GPS data (e.g. Van Hove et al. [1993]) have
highlighted the problem of using differenced data over
short baselines.  For this situation, there exists a strong
mathematical correlation between the partial derivatives
of the tropospheric delay at the two stations.  For baseline
lengths up to several hundred kilometres the elevation
angles to a particular satellite will be similar and hence
so will the partial derivatives (but with opposing signs).
Even if the meteorological conditions are drastically
different at the ends of such a baseline, it is difficult for a
least-squares model to separate the two contributions.

The usual technique to overcome this problem is known
as levering [Rocken et al., 1995] and works by simply

fixing the tropospheric delay at the reference station and
estimating the relative delay at the secondary station.
Our use of real-time meteorological data at the reference
station will help minimise the error in the estimated
residual delay.  While some error will be present, it will
be constant for all solutions computed with different
tropospheric delay models at the aircraft.

This problem of estimating the tropospheric delay over
short baselines is compounded by the fact that the
determination of the height component of position is
sensitive to the existence of any unmodelled tropospheric
zenith delay and vice-versa.  To explain this we can
consider the observation equation for a single
station/satellite measurement contributing to the double-
difference observable.  Ignoring the ionospheric and
integer ambiguity terms (which we can remove), we
have:
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where the receiver and satellite coordinates are defined in
the local geodetic coordinate system (easting, northing
and height).  Linearising around approximate values and
subtracting from the observation gives:
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where the zero superscripts indicate predicted values; ∆
represents the small corrections to the a-priori estimates;
and a and e represent the azimuth and elevation angle of
the satellite.  The mapping function is approximated with
the cosecant of the elevation angle.  If we consider that
the corrections to the horizontal position components ∆E
and ∆N are largely decoupled from the height and
tropospheric delay components, then we can see how the
presence of height and zenith delay errors affect the
retrieval of each other.

Figure 1 shows the effect on the modelled range
difference of a zenith delay error of 2 mm, a height error
of 200 mm and their combined effect (∆ρ) from the
zenith down to an elevation angle of five degrees.
Additionally, we show what happens when we try to
recover the height and zenith delay components
assuming (incorrectly) that the contribution of the other
component is  zero.  We are able to accurately recover the
height component down to an elevation angle of
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approximately thirty degrees, beyond which the accuracy
increasingly degrades.  At the same time we are only able
to recover well the zenith delay error at the low elevation
angles.  At very high elevation angles an error in the
tropospheric zenith delay is almost indistinguishable
from the unmodelled height component.
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Figure 1.  Simulation of the impact and recovery of
height and zenith delay components on a GPS range.

What this means is that an unmodelled tropospheric
zenith delay error causes an error in height
determination, which increases with the inclusion of
lower elevation data.  This is a well known fact in GPS,
but importantly for us we can see that attempting to solve
for the zenith delay is hindered without low elevation
angle data.  These results will be modified if tight
constraints are placed on the station height components
in the least-squares adjustment.  By closely constraining
the height to its known value, the least-squares model is
better able to estimate the tropospheric zenith delay.

IMPLEMENTATION AND DATA PROCESSING

A least-squares positioning model using double-
differenced, dual-frequency, GPS carrier phase
observations is implemented in the KARS processing
software [Mader, 1996].  The code has been modified at
UNB to allow for the estimation of the tropospheric delay
as either a scale factor or a zenith delay residual at either
the secondary roving receiver or at both the rover and the
reference receiver.

To test the estimation of the residual delay, some of the
flight data from the St. John’s, Newfoundland–based
Frizzle ’95 campaign was used (see Collins and Langley
[1997] for more details).  Meteorological data consisting
of pressure, temperature and relative humidity were
simultaneously recorded along with dual frequency GPS

data at an aircraft and at a ground reference station.
Both data types are available at a two second sampling
interval.

It has been possible to use the carrier phase data down
to an elevation angle of five degrees on one of the data
sets.  Of the data recorded on the other days of this
experiment, there are too many cycle slips and data gaps
for the software to adequately process the data.  Figure 2
shows the flight path over which the data was recorded
on March 3rd 1995.  The maximum distance reached
from the reference station was 210 kilometres.  As Figure
2 indicates, data collection was halted in mid-flight.
This was due to a lack of memory in the aircraft receiver.
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Figure 2.  Flight path of aircraft for data used in this
study.

A set of fixed carrier phase integer ambiguities for all
satellites on both frequencies was derived.  This was done
by processing the flight data at various elevation cut-off
angles while resolving the ambiguities “on-the-fly”.
Comparing the ambiguities from these solutions with
ambiguities computed for the short static period on the
ground before the flight, has enabled stable sets of
integers to be selected.  While confident that these are the
correct values, without actually estimating these values in
flight (in a similar manner to Sonntag et al. [1995]), we
can only confirm this by examining the residuals of the
position solutions to see if they diverge over time.

Of the remaining error sources, the primary one is the
satellite position error.  To minimise it as much as
possible, International GPS Service for Geodynamics
(IGS) precise orbits were used.  This leaves multipath
and noise as remaining unmodelled errors which should
be of the order of centimetres or less for the carrier phase
observable.



5

RESULTS

One tropospheric zenith delay and mapping function
combination was adopted for the reference station for all
the solutions.  These were the Saastamoinen [1973]
zenith delays using the simultaneously recorded meteor-
ological data and the mapping functions of Niell [1996],
which only require position and day-of-year information.

This combination was also used at the aircraft and
provided with the simultaneously recorded
meteorological data.  This model is denoted as SAANf
(‘f’ for full-met. input).  The model denoted as SAANx
(‘x’ for extrapolated) used the reference station
meteorological data scaled to the height of the aircraft
using standard atmospheric scaling equations (see
Collins and Langley [1997]); and the SAANh model (‘h’
for hydrostatic only) which predicted only the hydrostatic

delay at the aircraft from the real-time data while the wet
delay was set to zero.

Three other models were also tested for modelling the
delay at the aircraft: UNB4, which supplies
meteorological data based on the 1966 U.S. Standard
Atmosphere Supplements to the Saastamoinen and Niell
algorithms; the initially proposed WAAS model; and the
NATO recommended model (see Collins and Langley
[1997] for more details).

One solution was computed for each of these models
estimating the three-dimensional Cartesian positions of
the aircraft along with the residual tropospheric delay as
a scale factor at each epoch.  No filtering was applied and
no a-priori constraints were placed on any of the
parameters.  Each epoch provided an independent
solution.
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Figure 3.  Root-mean-square double-difference carrier phase residuals without residual tropospheric delay estimation.
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Figure 4. Root-mean-square double-difference carrier phase residuals with residual tropospheric delay estimation.
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Adjustment Residuals

Considering first of all the double-differenced carrier
phase residuals after the least-squares adjustment,
comparison of Figure 3 and Figure 4 shows the general
improvement gained by estimating a residual
tropospheric delay parameter.  Only four of the models
are plotted for clarity.  Figure 3 represents the root-mean-
square (rms) of the residuals computed without

estimating the residual tropospheric delay.  Almost every
plot has a distinct trace indicating the impact of each
tropospheric delay model.  The exception is for the traces
of the SAANf and UNB4 solutions, which closely follow
each other.  In Figure 4 however, all the traces have
merged to become almost indistinguishable, indicating
that estimation of the residual tropospheric delay has
largely removed the impact of the choice of a particular
model on the solution (note also the change of scale).
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Figure 5.  Root-mean-square double-difference carrier phase residuals with and without residual tropospheric delay
estimation — SAANf model used with aircraft data.
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Figure 6. Root-mean-square double-difference carrier phase residuals with and without residual tropospheric delay
estimation — WAAS model used with aircraft data.

Examining two models more closely, Figure 5 shows
the rms residual for each epoch for the SAANf model.  In
general, only a small improvement has been made in
estimating a residual correction.  This is to be expected
because the tropospheric delay prediction of this model is
fairly good due to the use of meteorological
measurements recorded at the aircraft.  A better
indication of the improvement possible with estimating

the residual delay is gained from examining the impact
of the initially-proposed WAAS model on the solution.
This model was left out of Figure 3 and Figure 4 because
of its large impact.  This can be seen in Figure 6 where
large jumps correspond to the rising and setting of
satellites at 5 degrees elevation angle.  This model uses
only a modified cosecant of the elevation angle mapping
function and consequently large errors would be expected
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with these satellites.  As this plot shows, some, but not
all, of the error has been absorbed by estimating the
residual tropospheric zenith delay.  In addition, the
spikes visible in this plot at approximately 12 and 40

minutes into the flight are an artifact of a discontinuity in
the formulation of this model.  This occurs whenever the
aircraft crosses the 1500m height level (see Collins and
Langley [1997] for further discussion of this feature).
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Figure 7.  Residual tropospheric delay estimates for models with no real-time meteorological data.
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Figure 8.  Residual tropospheric delay estimates for models with real-time meteorological data.

Residual Delay Estimates

Turning to the actual residual delays estimated, Figure
7 shows the values for the models without real-time
meteorological input and Figure 8 for those with real-
time input.  Both plots can be considered in two halves
— before and after the 45 minute epoch.  Consideration
of  Figure 9 shows that before this point in the flight
there are no satellites at low elevation angles (< 10
degrees).  As indicated previously, this limits the
potential for adequately estimating the tropospheric

delay.  As an example, given that the SAANh model
predicts only the hydrostatic delay we would expect
positive zenith residuals to represent the remaining wet
delay.  This is generally true in the second half of Figure
8, but the wide variation in the first half, coupled with
the large negative values could mean that the residual
estimates for this time span are unreliable.

At the same time however, it is interesting to note from
Figure 7 that the residual estimates for the NATO model
solution have an almost constant bias component over the
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whole time span.  This trend is what we would expect
given that the NATO model is formulated with a
constant value of surface refractivity which, to a first
order consideration, is biased from the real surface
refractivity experienced over the flight path.  Both of the
other models used in the solutions shown in Figure 7
change their atmospheric parameter inputs primarily as a
function of latitude, hence there is no constant bias in
their solutions.

Considering the results for the other models, Figure 7
shows that UNB4 gives the smallest residual tropospheric
delay for the models without real-time meteorological
input; and that the initially-proposed WAAS model is

greatly influenced by low elevation satellites in the
solution. Given the correct zenith delay, the initially-
proposed WAAS model will over-predict the delay at low
elevation angles.  This can be seen at ~45 minutes when
a new satellite appears.  The residual estimate jumps to a
large negative value to try to account for the over-
prediction.  The residual then increases toward zero as
the satellite rises in the sky.

Figure 8 shows that the full-meteorological model,
SAANf, has the smallest residual delay, which is what
we would hope for.  The extrapolation of surface values
introduces some bias (model SAANx), but the largest
residual delay is observed when estimating the whole wet
zenith delay (model SAANh).
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Figure 9.  Comparison of SAANf residual tropospheric delay estimates and their uncertainty with the lowest elevation
angle used in the solution.

Position Differences

Turning to the impact of the residual tropospheric delay
estimation on the position determination, we can first of
all consider the residual delay that remains when using
real-time meteorological data.  Without residual delay
estimation, we would consider the SAANf solution to be
the “best” obtainable because of its realistically-modelled
zenith delays and mapping functions driven by real-time
meteorological data.  By estimating the residual delay we
would hope to model any deviations from the average
atmospheric structure implied by these models.  Figure
10 shows the difference in the position components for
solutions computed using the SAANf model with and
without residual tropospheric delay estimation.  The
difference in the height component is considerable: of the

two sets of statistics for this data, even when considering
only the “good” estimates after the 45 minute epoch,
there is a mean bias in height of ~5 cm with an rms of
~9 cm.

In addition, using the solution with the SAANf model
and residual tropospheric delay estimation as a
benchmark, we can compare the impact of estimation
with other models and confirm that estimation of the
residual delay helps to remove the impact of less accurate
models.  Figure 11 shows the position differences of the
solution computed using UNB4 at the aircraft and Figure
12 shows the influence of using the NATO model at the
aircraft.  The biases in these two plots are predominantly
a function of the lowest elevation angle (cf. Figure 9).
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Figure 10.  Difference in position solutions with and without residual delay estimation from predictions with real-time
meteorological data (SAANf model).
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Figure 11.  Position differences between the UNB4 solution and the SAANf solution.
(Residual delay estimated in both solutions.)

Time (min)

0 10 20 30 40 50 60 70 80 90 100

P
os

iti
on

 d
iff

er
en

ce
 (

cm
)

-10.0

-5.0

0.0

5.0

10.0
Latitude
Longitude
Height

Height difference rms = 2.6 cm

Figure 12.  Position differences between the NATO solution and the SAANf solution.
(Residual delay estimated in both solutions.)



10

Where there are no low elevation satellites to magnify the
errors, all three solutions compare at the millimetre level
in all three position components.  Even so, the impact of
using the UNB4 model instead of real-time
meteorological data is still only of the order of 1 cm in
height at maximum.  The impact of the NATO model is
one order of magnitude larger.

CONCLUSIONS

We have attempted to show in this paper the effect of
implementing residual tropospheric delay estimation
from GPS data recorded at an aircraft in flight.  The aim
was to remove any unmodelled effects of the troposphere
that cannot be predicted by empirical models, even when
using meteorological measurements of the ambient
atmosphere.

Problems were encountered with the general stability of
the least-squares solution when attempting to estimate
the residual delay at the reference station as well as at the
aircraft.  The similarity of the normal equation
coefficients prevents the separation of the contribution of
the atmosphere at the two stations in the double-
difference observable.  By estimating only the residual
delay at the aircraft we are assuming that there is no
residual effect at the reference station, or that this effect
is absorbed by the estimate for the aircraft.

Estimating the residual delay appeared to almost
wholly remove the impact of a particular tropospheric
delay model.  However, the accuracy of the mapping
function and the impact of the satellite geometry are
important.  It appears crucial that there exists data at low
elevation angles (less than 10 degrees) for the
tropospheric residual estimate to be meaningful.  With
this condition, plus an accurate mapping function,
estimating the residual delay not only removes the impact
of one particular tropospheric delay model but also the
biases from using non-real-time meteorological
parameter values at the aircraft.  Therefore, if the highest
possible precision is required for aircraft positioning the
estimation of a residual delay should be considered,
otherwise biases of the order of ten centimetres may be
present in the solution.

The work reported in this paper has been only a
preliminary study and further investigations are required
to study the condition of the least-squares normal
equations and the overall reliability of the technique.
New investigations could include the impact of antenna
phase centre corrections, as the data is particularly
sensitive to these at low elevation angles.  Additionally,
the implementation of a Kalman or other type of
constraining least-squares filter could significantly

enhance the technique by providing some a-priori
constraints to the estimates.
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