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ABSTRACT 
 

Resolving the GPS carrier-phase ambiguities has been 
a continuing challenge for sub-centimeter-level high-
precision GPS positioning. In kinematic and long-baseline 
applications, the challenge turns out to be even greater 
due to the substantial problems in the observation time 
series – the decorrelation of biases, the quasi-random 
behavior of multipath and the correct interpretation of 
receiver system noise (or observation noise) for 
observations conducted in kinematic mode – which can be 
ignored to some degree in static and short-baseline 
applications. As baseline lengths grow longer, eventually, 

these problems will make it difficult to get reliable 
ambiguity solutions in kinematic applications. 

We have found that the problems related to kinematic 
long-baseline applications can be handled in an optimal 
way when a particular generalized procedure is adopted in 
the observations processing scheme. The generalized 
procedure includes: a functional model which takes into 
account all significant biases; a stochastic model which is 
derived directly from the observation time series; a 
quality control scheme which handles cycle slips (or 
outliers); and a parameter-estimation scheme which 
includes a simultaneous ambiguity search process. The 
prototype approach described in this paper follows a 
generalized procedure for use when constraining external 
observations (such as those provided by an external 
atomic clock, inertial navigation system (INS) and so on) 
are not available. For each stage of the procedure, the new 
concepts of our approach are explained and some 
preliminary test results are given. 
 
INTRODUCTION 
 

It has been a continuing challenge to determine and 
fix the GPS carrier-phase ambiguities, especially for long-
baselines. Moreover, the challenge is even greater for 
kinematic GPS applications. Generally, the difficulty in 
solving the ambiguities is due to the decorrelation of 
biases in the GPS observations. As is well known, the 
GPS observations at the base and remote stations will be 
influenced by different atmospheric effects and satellite 
orbit bias as the baseline length between the stations gets 
longer. Furthermore, when the pseudorange observations 
are incorporated with the carrier-phase observations, 
multipath can be the dominant error source which makes 
it difficult to solve the ambiguities because of its quasi-



random behaviour over a relatively short time span. In 
kinematic situations, it is not easy to model the receiver 
system noise since the dynamics of a moving platform 
may mask some aspects of the receiver system noise 
which usually can be well modeled statistically by an 
elevation-angle dependent function. 

To obtain optimal solutions in the least-squares 
estimation, a functional (or deterministic) and a stochastic 
model should be specified correctly. A functional model 
describes the relationship between observations and 
unknown parameters while a stochastic model represents 
the noise characteristics of the observations. Actually, the 
challenge that we face in long-baseline kinematic 
applications is how to correctly specify the models 
without ignoring the problems mentioned above; i.e., the 
decorrelation of biases, the quasi-random behavior of 
multipath and the receiver system noise for observations 
conducted in kinematic mode. In this case, the problem 
related to the functional model is that the number of 
unknown parameters is greater than that of the 
observations, when constraining external observations 
such as those provided by an external atomic clock, 
inertial navigation system (INS) and so on are not 
available. Furthermore, it turns out to be very difficult to 
specify a correct stochastic model if we opt for a simpler 
functional model by ignoring certain parameters because 
of the residual effects of these parameters as well as the 
dynamics of a moving platform. As a fundamental 
problem in processing the GPS observations, we also face 
a quality control issue; i.e., how do we implement a 
robust cycle-slip (or outlier) handling routine? Especially 
for long-baseline kinematic applications, this issue turns 
out to be another challenge. 

Basically, our approach in attempting to meet these 
challenges follows a generalized procedure which 
consistently keeps track of the noted problems in long-
baseline kinematic applications. The prototype approach 
described in this paper is based on the case when dual-
frequency GPS observations are available. In situations 
where external observations are also available, the 
approach can integrate the additional information without 
undue complexity and ultimately, improve system 
reliability. 
 
Considerations for a Reliable Approach 
 

As has been experienced, the stochastic model is 
typically more difficult to handle than the functional 
model when considering a reliable approach for long-
baseline kinematic applications. Assuming that the 
functional model includes all significant unknown 
parameters (e.g., those associated with atmospheric 
effects, satellite orbit bias, multipath and so on) except for 
receiver system noise (i.e., antenna noise, cable loss and 
receiver noise; see Langley [1997]), we can deal with the 
stochastic model more easily. In this case, the problems 
associated with the stochastic model are: cross correlation 

(between different observation types), time correlation 
(between epochs), spatial correlation (between channels), 
elevation-angle dependence and the error probability 
distribution [Tiberius et al., 1999]. Basically, we assume 
that all parameters describing the stochastic modeling 
problems can be calibrated in the laboratory. As long as 
the functional model is correct, these parameters can be 
used at a remote site without tuning. However, it should 
be noted that the elevation-angle dependence of the 
system noise often varies with the particular kinematic 
situation. The elevation-angle dependence of the system 
noise is induced mainly by the receiver antenna’s gain 
pattern, with other factors such as atmospheric signal 
attenuation. The elevation angle is normally computed 
with respect to the local geodetic horizon plane at the 
antenna phase center regardless of the actual orientation 
of the antenna. Accordingly, the relationship between 
antenna gain and the signal elevation angle may be 
difficult to assert when the antenna orientation is 
changing which can happen often in kinematic situations.  

If we use a functional model which includes all 
significant unknown parameters, we will face a problem 
in conventional least-squares estimation or Kalman 
filtering; i.e., the singularity or observability problem. 
Although this problem can be handled at second-hand by 
a parameter transformation method to reduce the number 
of the unknown parameters [Jin, 1996], an inherent 
difficulty still remains: 1) uncertainty of the parameter 
estimators is hardly improved because there may be no 
surplus redundancy. In using a Kalman filter, redundancy 
can be improved by additional information from the 
dynamic model of the filter. However, it is not easy to 
come by an accurate dynamic model. Introducing an 
inaccurate dynamic model into the filter brings about the 
divergence of the Kalman filter [Fitzgerald, 1971]. It is 
possible to partially compensate for the effects of 
inaccuracy of the dynamic model by increasing the 
intensity of process noise assumed by the filter. However, 
uncertainty of the parameter estimators will not be 
improved much in that case; 2) the parameter estimators 
can be biased to some degree due to the higher-frequency 
components of the unknown parameters (e.g., ionospheric 
scintillation, jerk and so on). In the context of signal 
processing, this problem is related to the sampling rate 
and any aliasing [Ifeachor and Jervis, 1993]. For 
example, if we have an observation time series recorded 
at a one second sampling interval (i.e., 1 Hz sampling 
rate), the time series can contain information in a 
frequency band up to 0.5 Hz (i.e., the Nyquist frequency). 
If the effects of any higher-frequency components above 
0.5 Hz are significant, the time series will include aliased 
signals. This will result in biased state estimators after all. 
Ionospheric scintillation and jerk due to the platform 
dynamics can bring about the problem in GPS long-
baseline kinematic applications. To obtain a wide 
bandwidth which includes higher-frequency components, 
we have to increase the sampling rate. By how much 



should we increase it? The quick answer is enough to 
remove the effect of aliasing in order to get unbiased 
parameter estimators. In other words, we need the 
observation time series obtained at an appropriate 
sampling rate for a specific application. 
 
KALMAN-FILTER-BASED AMBIGUITY SEARCH 
PROCESS 
 

There can be many approaches to the question: Which 
strategy will be preferable for handling GPS observations 
in long-baseline kinematic applications? However, in 
terms of implementation, our answer is a Kalman filter 
approach combined with an ambiguity search method 
which can deal with both the functional and stochastic 
models in an optimal way (Fig. 1). 
 
 

 
Fig. 1. Functional block diagram to fix the GPS 
ambiguities in long-baseline kinematic applications. 
 
 
Parameter Estimation using a Kalman Filter 
 

A Kalman filter approach can efficiently implement 
quality control schemes such as cycle-slip handling (i.e., 
cycle-slip detection, identification and adaptation), and 
that the state estimators of the filter can be used at 
second-hand in the ambiguity search process as long as 
the state estimators are not biased. However, fundamental 
concerns related to its implementation are: 1) How do we 
reduce the number of unknown parameters in the filter 
state vector? 2) How do we ensure the observability of the 
given system model under the rank-deficiency condition? 
3) Which implementation method is most efficient? 

Basically, the problem is that the number of unknown 
parameters is much greater than that of the observables. 
This is an inherent problem of carrier-phase applications 
and turns out to be a substantial one in such an approach 
as ours which tries to estimate all the bias parameters (so 
far, all except for the multipath in the carrier-phase 
observations). For example, we use the following 
geometry-free observation model [Teunissen, 1997] 

which includes the dual-frequency observations for each 
double-difference satellite-receiver pair: 
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where L stands for the combined effect of a priori (or 
assumed) geometric range, satellite orbit bias and 
tropospheric delay ( )L sρ τ= + + ; I for the L1 

ionospheric delay; b for the multipath in carrier phases; B 
for the multipath in code pseudoranges; n for the 
ambiguities (in distance units); a constant 2

2 1( / )γ λ λ= ; 

subscripts “1” and “2” correspond to L1 and L2, P1 and 
P2 (or C/A and P2), respectively. The subscript k 
represents a current observation epoch. 

To reduce the number of unknown parameters, the 
double differencing scheme is used in Eq. (1). In addition, 
dual-frequency carrier phases (L1 and L2) and code 
pseudoranges (P1 and P2, or C/A and P2) is used to 
increase observation redundancy. Furthermore, the 
unknown parameters are transformed to ensure the 
observability of the given system model. A separate 
Kalman filter is implemented for each double-difference 
time series because its programming and stochastic 
modeling are easier. As a result, we form the following 
state vector: 
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where superscript “0” stands for the initial (at the start of 
observations) bias value;; “L” for the higher-order time 
derivatives of the parameters. The “~” symbol indicates a 
transformed parameter. Therefore, the transformed 
observation model becomes 
 

1 1

2 21

1 12

2 21

2

1 1 0 0 1 0

1 0 0 0 1

1 1 1 0 0 0

1 0 1 0 0
k k

k

L

I

B

P B

P n

n

ε
εγ
η
ηγ

 
 Φ −      

      Φ −    = + 
      
               

  

%
%
%
%
%
%

 (5) 

 
It should be noted that each transformed parameter of 

Eq. (2) includes a true parameter value, the carrier-phase 
multipath on L1 and L2, constant initial-multipath 
( 0 0

1 2 and B B′ ′ ). The constant initial-multipath can be 

separated from the parameter estimators in the ambiguity 
search process (see section  ‘Ambiguity Search Process’) 
but the carrier-phase multipath is so far difficult to 
estimate in this approach as long as we cannot use 
additional observations such as the signal-to-noise ratio 
(SNR) or alternatively the carrier-to-noise-power-density 
ratio (C/N0) for the carrier-phase observations. 

Due to the definition of 1 2 and B B% %  in Eq. (3), we can 

initialize the transformed observation model. After 
initialization, time-dependent state parameters 

1 2( , ,  and )L I B B% % % %  can be estimated because the ambiguity 

parameters 1 2(  and )n n% %  are time-independent. It is evident 

that there is no surplus redundancy in the observation 
model. Therefore, we need to introduce dynamic models 
to improve uncertainty of the parameter estimators. 

For each transformed parameter, we can introduce the 
corresponding dynamic model. For example, a constant-

acceleration dynamic model may be assumed for I% . In 

this case, the third-order time derivative of I%  can be 
modeled as a zero-mean white noise process with a 
constant spectral density 

I
q&&&%  (m2/s5). Then, we can form 

the following dynamic model for I% : 
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where e  is a process noise vector and 1k k kt t t −∆ = − . In 

the same way, we can introduce dynamic models for 

L̂ and B̂ . For the ambiguity parameter n̂ , we have to 
assign zero process noise because it is time-independent. 
Note that the parameter estimators determined in this way 
can be biased in some cases as mentioned previously in 
the section ‘Considerations for a Reliable Approach’. In 
addition, we will not get unbiased parameter estimators if 
cycle slips are not handled perfectly. 
 
Quality Control 
 

Since we do not consider a cycle slip as an unknown 
parameter in the functional model, we have to detect and 
remove it from the observations. If we fail to do that, the 
Kalman filter parameter estimators will be biased after all. 
Basically, we have used a cycle-slip handling procedure 
similar to that of Teunissen [1990a]; i.e., the DIA 
(Detection, Identification and Adaptation) procedure 
based on the Kalman filter prediction residuals. However, 
we have found that the procedure does not work as well 
as expected in kinematic situations. This problem is due 
to the dynamics of a moving platform and eventually, 
related to sampling rate. To avoid the effect of the 
platform dynamics, we can increase the process noise of 
the dynamic model of the filter; i.e., by assigning a very 
large variance to the time-dependent state parameters. 
However, this may result in unnoticed outliers due to an 
increase in process noise and subsequently, an increase in 
the variance-covariance matrix of the predicted state (see 
Teunissen, 1990b). 

To fortify the procedure against platform dynamics, 
we use a masking technique based on a logical 
intersection of necessary and sufficient conditions for 
cycle-slip detection and identification. When a cycle-slip 
happens, we can see a certain spike in the quadruple-
difference (obtained by differencing consecutive triple-
difference observations) time series. We consider the 
spike pattern as a necessary condition for cycle-slip 
detection and identification. In some respects, this 
approach is similar to the wavelet transform technique to 
detect cycle slips [Collin and Warnant, 1995]. As a 



conventional approach incorporated within a Kalman 
filter, we can use prediction residuals to detect a cycle 
slip. However, this should be used carefully because the 
prediction residuals are very sensitive to the dynamics of 
a moving platform and the sampling rate of the 
observations. Another approach given in Kee et al. [1997] 
is the use of the ionospheric-delay drift estimators. 
However, this also should be used carefully because there 
are cases when a cycle slip cannot be detected such as 
when cycle slips of the same magnitude (in distance units) 
occur simultaneously on L1 and L2, not to mention the 
very obvious case when cycle slips in both carrier phases 
cancel each other in the ionosphere-free combination (i.e., 

1 1

77 60
1 2 0c c− = , where c1 and c2 represent cycle slips on 

L1 and L2 in cycle units). Though the former case is quite 
exceptional, according to our investigations, the case 
occurs when the millisecond jump happens in a certain 
receiver clock but the time tag is inconsistent with it. 
Nevertheless, in a wide sense, we consider that these two 
approaches – prediction residuals and ionospheric-delay 
drift estimators – provide sufficient conditions for 
detecting cycle slips. 

So far, we have found that the performance of this 
procedure is almost perfect as far as cycle-slip detection 
and identification are concerned. However, cycle-slip 
adaptation (i.e., removing a cycle slip from the 
observations) should be executed carefully because the 
magnitude of the cycle slip must be determined correctly 
to remove it. If we try to determine the magnitude of a 
cycle slip using the Kalman filter prediction residuals, we 
may introduce a new bias in the observations. As a simple 
strategy to avoid this problem, we can reset the Kalman 
filter state vector whenever a cycle slip is detected and 
identified. 

 
Receiver System Noise Estimation 

 
If the stochastic model is not correct, it will affect the 

computed parameter estimators to some degree. In the 
case where we increase the process noise of the dynamic 
model of the filter to avoid the effect of the platform 
dynamics, stochastic modeling turns out to be crucial 
because the filter depends mainly on the measurement 
noise. As was mentioned already, we had better not use 
the elevation-angle dependent function for the stochastic 
model for data collected from moving platforms. An 
alternative, and potentially more powerful, approach can 
be derived directly from measurements of the quality of 
each pseudorange and carrier-phase observation. This 
information is contained in the SNR (or alternatively in 
the C/N0). This value determines, in part, how well the 
receiver’s tracking loops can track the signals and hence 
(to a large degree) how precisely the receiver obtains 
pseudorange and carrier-phase observations [Langely, 
1997]. Although the potential merits of using the SNR 
information as a stochastic modeling scheme was already 
discussed by Talbot [1988], a comprehensive examination 

of the technique has only taken place recently [Hartinger 
and Brunner, 1998; Barnes et al., 1998]. Although some 
GPS receiver manufacturers provide SNR values in their 
data streams, meaningful SNR values are not easy to 
come by (see Collins and Langley, 1999). Furthermore, 
multipath signals can adversely impact the receiver SNR 
depending on whether the direct and reflected signal 
components reaching the receiver combine constructively 
or destructively [Cox et al., 1999]. As another approach 
incorporated within a Kalman filter, a covariance-matrix 
estimation method based on measurement filtering 
residuals can be considered [Wang, 1999]. In this 
approach, we have to assign a very large process noise to 
the time-dependent state parameters so that the filter 
operates only on the measurement noise. If our goal is just 
estimating receiver system noise, this approach provides 
an optimal estimate for that. If this is not the case, say, if 
we want to get accurate state parameter estimators as well 
as receiver system noise, we cannot simply assign a very 
large process noise to the time-dependent state 
parameters. 

The following concept represents another 
experimental approach which can be derived directly 
from the observation time series under a simple 
assumption. This approach is independent of the Kalman 
filtering. We use the quintuple-difference (differencing 
consecutive quadruple-difference observations after 
deleting cycle-slip spikes) time series to estimate the 
receiver system noise for observations conducted in 
kinematic mode. We have chosen this approach because 
the quadruple-difference time series are already obtained 
for quality control as described in section ‘Quality 
Control’. Therefore, this approach can be implemented 
without undue complexity. In this approach, we assume 
that the effects of the unknown parameters (except the 
receiver system noise) are removed in the quintuple-
difference time series. For example, consider the L1 
quintuple-difference carrier-phase time series 
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where 1Φ  is the L1 double-difference observable. Using 

the one-dimensional Taylor series including higher-order 
time derivatives for each unknown parameter, we have 
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where S represents each unknown parameter and R is a 
remainder term known as the Lagrange remainder. 
Assuming that the observation time interval 0( )t t−  is the 

same as Ä for the time series, we have the following 
quintuple-difference: 
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where 3( )R t∑  is the quintuple-difference for the 

remainder R. Substituting Eq. (10) into (8) gives 
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If the effect of the terms in the right-hand side of Eq. 

(12) is small enough to be ignorable and/or the sampling 
rate (1/Ä) is high in Eq. (11), and if the effect of the 
second term in the right-hand side of Eq. (11) (i.e., the 
effect of the quintuple-difference for the remainder R) is 
also small enough to be ignorable, we can get an 
acceptable inference as: 
 

1 1εΦ ≈&&& &&& . (13) 

 
However, the underlying assumption in Eq. (13) is apt 

to be violated in high-dynamic environments because ρ ′′′  

(the jerk of the geometric range) can be so predominant 
that it may not be eliminated in the quintuple-difference 
time series. This fact urges us to use the observations 
obtained at an appropriate sampling rate for specific 
applications; e.g., 1-4 Hz sampling rate in hydrographic 
applications. 
 
Ambiguity Search Process 
 

Using the estimators of the state vector, we can 
transform the original carrier-phase double-difference 
observations to those to be used for the ambiguity search 
process. The purpose of this transformation is to reduce 
the number of unknown parameters at the ambiguity 
search step. However, there can be some cost to pay for 
this transformation (i.e., the receiver system noise is 
increased and time-correlated). We use an ionosphere-free 
transformation to reduce this cost: 
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where 1 2b b bγ′ = −  and 0 0 0

12 1 2B B B′ ′ ′= − . As a matter of 

fact, we have found that the transformed observations are 
similar to the ionosphere-free linear combination but have 

smaller receiver system noise. The time-correlated 
receiver system noise can be estimated using the variance-
covariance matrix which is obtained adaptively from the 
Kalman filter. Using the transformed observation for each 
double-difference observation, we have the augmented 
observation equations as 
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where x includes unknown baseline components and the 
residual tropospheric delay; A is the corresponding design 
matrix for x; N is the ambiguity vector (in cycle units); 
Ë  is the corresponding design matrix for N; s is the 
satellite orbit bias vector; b′  is the carrier phase 

multipath vector; 0
12B′  is a constant initial multipath 

vector; and0 0ñ ô  are the initial estimates of the 

geometric range and the tropospheric delay, respectively. 
In practical implementation of Eq. (15), we assume that 
the carrier-phase multipath is ignorable and precise 
satellite orbit is available. In addition, we use the UNB3 
tropospheric delay prediction model [Collins and 
Langley, 1997a] to compute 0ô . Furthermore, we use a 

design matrix derived from a differential mapping 
function to estimate the residual tropospheric delay 
[Collins and Langley, 1997b]. As can be understood in 
looking at Eq. (15), the ambiguities cannot be separated 
from the parameters 0

12B′  because they are also constant. 

This problem can be solved using the widelane 
combination of the estimators ˆ ˆ and 1 2n n  in distance units. 

From Eq. (3), we can formulate the widelane combination 
as 
 

( )1 2ˆ ˆ 0
1 2 1 2 12n n N N B′− = Λ − Λ − . (16) 

 
As the Kalman filter converges, the widelane 

combination verges to a constant quickly. This means that 
the parameters 0

12B′  can be determined in the ambiguity 

search process, where  and 1 2N N  are given as known 

values, as long as the widelane combination, ˆ ˆ1 2n n− , 

converges. 
For the ambiguity search process, we use the 

independent-ambiguity-search approach [Hatch, 1990]. 
Since there remain four unknown parameters in the 
observation equations after the observations are 
transformed, we always have eight search levels (four 
search levels for  and 1 2N N , the L1 and L2 ambiguities, 

respectively) regardless of the number of double-
difference observations. In this case, the search space may 
be enormous even if a small search window is used. This 



means that the ambiguity search process may be so time-
consuming that it is not appropriate for a real-time 
system. In order to overcome this problem, we use an 
efficient ambiguity search engine, namely OMEGA 
(Optimal Method for Estimating GPS Ambiguities) as 
described by Kim and Langley [1999a and 1999b]. 
 
TEST RESULTS 
 

In order to illustrate the performance of our technique, 
it has been tested with data sets recorded in static and 
kinematic modes during the UNB spring 2000 surveying 
camp. The static data set (UNB-STA) was recorded at a 
ten-second sampling interval at Gillin Hall located at 
UNB in Fredericton for 20 hours from 21:30 on 2 May 
2000 and simultaneously at Ganong Hall at UNB’s Saint 
John campus. The distance between the stations was more 
than 80 km. The kinematic data set (UNB-KIN) was 
recorded at a one-second sampling interval on board a 

vehicle traveling in the downtown area of Saint John and 
surrounding highways for 2 hours on 3 May 2000. 
Ashtech Z-XII receivers were used to record dual-
frequency data. We also have used a marine kinematic 
data set (CCG-KIN) to illustrate one problem related to 
cycle slips. The dual-frequency data were recorded at a 
one-second sampling interval on board a hydrographic 
sounding ship on the St. Lawrence River on 22 October 
1998 and simultaneously at one reference station (Trois-
Rivières DGPS) in the Canadian Coast Guard (CCG) 
DGPS and OTF network. Ashtech Z-XII and Trimble 
4000 SSI receivers were used at the reference station and 
on the ship, respectively. 

We compared two approaches for estimating receiver 
system noise; i.e., the C/N0 observations and the 
quintuple-difference time series. Estimation models for 
receiver system noise using the C/N0 observations are 
given by Langley [1997]. 
 

 

 
Fig. 2. Elevation angle and carrier-to-noise-power-density ratio (C/N0) in static mode (UNB-STA). Red line is the C/N0 

observations for L1(C/A) and blue line for L2(P). 
 
 

Fig. 2 shows a typical example for the relationship 
between the satellite elevation angle and the C/N0 

observations in static mode; i.e., the C/N0 observations 
show a good elevation-angle dependency. Generally, the 
signal is weak and apt to be contaminated by multipath at 
low elevation angles. In kinematic situations, however, 
the signal can be contaminated by the platform dynamics 
as well as multipath even at high elevation angles (Fig. 3). 
This is why it may not be advisable to use an elevation-
angle dependent function in estimating the receiver 

system noise, especially in kinematic mode. Based on this 
fundamental analysis, we estimated the receiver system 
noise using both approaches. We found that both 
approaches have similar performance in static mode 
although the estimates of the C/N0 observations gave 
smooth curves while those of the quintuple-difference 
time series produced more realistic results (Fig. 4). In 
kinematic mode, the estimates of the quintuple-difference 
time series showed poor performance for L1 and L2 (Fig. 
5). This was mainly due to the platform dynamics; i.e., the 



residual effect of ρ ′′′  was so predominant that it was not 

eliminated in the quintuple-difference time series. We can 
see this fact clearly when we use the geometry-free 
combinations ( 1 2Φ − Φ  and 1 2P P− ); i.e., we can get 

realistic estimates of the receiver system noise from the 
geometry-free combinations because they are free from 
the platform dynamics (Fig. 6).  
 

 

 
Fig. 3. Elevation angle and carrier-to-noise-power-density ratio (C/N0) in kinematic mode (UNB-KIN). Red line is the 
C/N0 observations for L1(C/A) and blue line for L2(P). The plots of Saint John downtown display the kinematic data. 

 

 
Fig. 4. Double-difference receiver system noise estimation in static mode (UNB-STA): (a) the C/N0 approach and (b) 

the quintuple-difference approach. Y-axis (std.) represents the standard deviation (1 ó) of the estimators. 



 
Fig. 5. Double-difference receiver system noise estimation in kinematic mode (UNB-KIN): (a) the C/N0 approach and 

(b) the quintuple-difference approach. Y-axis (std.) represents the standard deviation (1 ó) of the estimators. 
 
 

 
Fig. 6. Double-differnece receiver system noise 
estimation using the geometry-free combination in 
kinematic mode (UNB-KIN): (a) the C/N0 approach 
and (b) the quintuple-difference approach. 

 

 
Fig. 7. Kalman filter parameter estimators for the 

double-difference time series (UNB-STA) of PRN9 and 
PRN23 in static mode. 

 



 
Fig. 8. Kalman filter parameter estimators for the 

double-difference time series (UNB-KIN) of PRN13 
and PRN10 in kinematic mode. 

 
 
Figure 7 and 8 show examples of the performance of 

the Kalman filter for the data sets (i.e., UNB-STA and 
UNB-KIN) obtained at the UNB spring 2000 surveying 
camp. Note that each parameter estimator includes the 
carrier-phase multipath on L1 and L2, the constant initial-
multipath, and the receiver system noise. The most 
significant difference between the parameter estimators 
and true parameter values is an offset along the y-axis due 
to the constant initial-multipath. In Fig. 7, we can see 
clearly the effect of multipath after an elapsed time of 6 
hours. Compare with Fig. 2. Furthermore, we can get 
good insight into the dynamic situations of the vehicle in 
Fig. 8. Although our investigations for the performance of 
the Kalman filter have shown good results, there might be 
a concern about the current approach: i.e., we need to 
increase observation redundancy. So far, there is no 
surplus redundancy in the observation model. As a result, 
we need to improve the accuracy of the initial estimators 
for the state parameters as well as the dynamic model in 
order to obtain accurate state parameter estimators. We 
will work on this issue in near future. 
 

 
 
 

 
Fig. 9. Example of cycle-slip detection and identification procedures (CCG-KIN: PRN15&30): (a) L1 Quadruple-
difference time series; (b) Cycle-slip candidates detected by spikes; (c) Cycle-slip candidates detected by the Kalman 
filter prediction residuals (95% confidence level); (d) Cycle-slip candidates detected by the ionospheric-delay drift 
estimators (95% confidence level); and (e) Masking results (cycle-slip identification). 
 



 
Figure 9 illustrates the cycle-slip detection and 

identification procedures. We used the marine kinematic 
data set (CCG-KIN) to explain one problem related to the 
procedures. The performance of these procedures (Fig. 
9e) is greatly improved compared with the conventional 
approaches as shown in Fig. 9c and 9d. For example, Fig. 
9e shows perfect cycle-slip detection and identification 
results (i.e., there were two cycle slips on the observation 
time series used). On the other hand, Fig. 9c shows that 
the approach using the Kalman filter prediction residuals 
falsely detected cycle slips at certain epochs. If we set the 
confidence level lower than 95%, the results will be even 
worse. Furthermore, Fig. 9d shows that the approach 
using the ionospheric-delay drift estimators did not detect 
a cycle slip at a certain epoch where, in fact, a cycle slip 
did occur. 
 
CONCLUDING REMARKS 
 

We have developed a prototype approach to solve the 
ambiguity fixing problems in long-baseline kinematic 
applications. We focused mainly on the procedures to 
attain a reliable approach for such applications in this 
paper. The main feature of the technique, which may 
differ from other approaches, is that the system takes into 
account the problems of handling the decorrelation of 
biases, the quasi-random behavior of multipath and the 
receiver system noise in kinematic mode all at the same 
time within the functional and stochastic models for the 
GPS observations. In other words, we do not simply 
ignore these problems and hope their effects are averaged 
out. Instead, all the bias parameters and the receiver 
system noise (except multipath in the carrier-phase 
observations, so far) are estimated while a software 
process for quality control of the observations is 
proceeding. 

The first step in designing a system for long-baseline 
kinematic applications is to define an appropriate 
functional model which takes into account all significant 
biases. If we take a simplified model, so that if the effects 
of the residuals due to the missing parameters are 
significant, the parameter estimators will be biased. 
Unfortunately, this is the usual case in long-baseline 
kinematic applications. The second step is to define an 
accurate stochastic model which represents the noise 
characteristics of the observations. If the functional model 
was defined appropriately, the effects of the observation 
residuals reflect mainly the receiver system noise. As long 
as the effects of the observation residuals are concerned 
with the receiver system noise, we can find good 
approximation methods for the noise: i.e., the C/N0 
observations and the quintuple-difference time series. The 
final step is to define a parameter estimation scheme. If 
we have accurate functional and stochastic models, it is 
not difficult to come by accurate parameter estimators. 
However, we face another challenge in this step; i.e., 

there is no surplus redundancy in the observation model. 
We will tackle this problem in our future work. 
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