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ABSTRACT
In order to attain high precision positioning and
navigation results with GPS, cycle slips must be correctly
repaired at the data preprocessing stage.  A slip of only a
few cycles can bias measurements enough to make
centimetre-level positioning or navigation difficult.  Over
the past decade a number of methods have been
developed to detect and repair cycle slips.  The majority
of approaches involve forming cycle-slip-sensitive linear
combinations of the available observables.  Algorithms
have been designed to detect, determine, and repair these
cycle slips by fitting functions to the linear combinations
and observing differences between the functions and the
data combinations.  These methods invariably require user
intervention for problematic cycle slips in portions of
data, tuning of input parameters to data, or introduction of
additional carrier-phase ambiguity-resolution parameters
in the main data processing where pre-processing cycle-
slip determination has failed.

A method has been developed from various existing
techniques, that provides fully automatic cycle-slip
correction at the data preprocessing stage.  The algorithms
utilise two dual frequency, double-difference carrier
phase and pseudorange geometry-free linear
combinations.  These combinations are filtered to allow
for high-resolution cycle-slip detection, and are then
compared with least-squares-fitted Chebyshev

polynomials for cycle-slip determination.  Results
indicate that single-cycle slips can be reliably detected for
receivers in varied environments, and that these slips can
be repaired correctly.

INTRODUCTION
The use of GPS for precise static or kinematic positioning
requires the use of carrier-phase measurements.  Integer
ambiguities in the phase data must be removed to utilise
the full measurement strength of the phase observable.
This consists of initial integer ambiguities and additional
integer ambiguities introduced by cycle slips.  For long
baseline kinematic data processing (e.g., hundreds or
thousands of kilometres) estimation of the initial integer
ambiguities is a very difficult undertaking.  However, the
detection and correction of cycle slips is needed if
accurate positioning is to be carried out.  This task can be
quite labour intensive if semi-automated techniques are
used, or can produce erroneous results if inappropriate
automated techniques are implemented.  Slip detection
and repair still represents a challenge to carrier phase data
processing even after years of research, early on in which
it was predicted [Westrop et al., 1989] that cycle slips
would in all likelihood not pose a problem in the future
due to receiver advances.

This paper addresses the development of a cycle-slip
detection and correction technique designed to detect and
correct cycle slips in dual-frequency carrier phase data, in
a fully automatic manner, utilising carrier phase and
pseudorange measurements in a post-processing
environment.  The prime objective of the work is to
correctly detect and repair all cycle slips in the data pre-
processing (sometimes referred to as the data editing)
stage, with straightforward algorithms not dependent on
the quality of the input data.

What is a cycle slip?  Briefly it is a sudden integer
number of cycles jump in the carrier phase observable,



caused by the loss of lock of the receiver phase lock loops
[Leick, 1995].  The loss may be due to internal receiver
tracking problems or an interruption in the ability of the
antenna to receive the satellite signals [Seeber, 1993].  A
loss of lock may be shorter than the time interval between
two adjacent data collection epochs or as long as the time
interval between many epochs, in which case the term
data gap may be in order.  The process of cycle-slip
correction involves detecting the slip, estimating the exact
number of L1 and L2 frequency cycles that comprise the
slip, and actually correcting the phase measurements by
these integer estimates.

For completeness, a short description of the development
of strategies for detecting and determining cycle slips
over the past fifteen years or so is presented.  This is
followed by the description of the enhanced detection and
correction method.  Results of the new technique
presented.  Finally concluding remarks and proposals for
future research are given.

METHODS OF DETECTING AND DETERMINING
CYCLE SLIPS
In this section, a general review of detection and
determination philosophies is given, with specific
methods and equations expanded upon in the later
sections.  Texts containing detailed discussions of this
topic include Hofmann-Wellenhof et al. [1997] and
Seeber [1993].

For the most part, techniques used in the detection and
determination of cycle slips have not changed drastically
since the first methods were devised in the early 1980s.
The focus has always been on attempting to develop a
reliable, somewhat automatic detection and repair
procedure.  All methods have the common premise that to
detect a slip at least one smooth (i.e., low noise) quantity
derived from the observations must be tested in some
manner for discontinuities that may represent cycle slips
[Lichtenegger and Hofmann-Wellenhof, 1990].

The derived quantities usually consist of linear
combinations of the undifferenced or double-differenced
L1 and L2 carrier-phase and possibly pseudorange
observations.  Examples of combinations useful for
kinematic data are the ionospheric phase delay (a scaled
version of which is called the geometry-free phase)
[Goad, 1986; Bastos and Landau, 1988, Blewitt, 1990;
Gao and Li, 1999], range residual [Bastos and Landau,
1988], and widelane phase minus narrowlane
pseudorange [Blewitt, 1990; Han, 1997; Gao and Li,
1999].

Once the time series for the derived quantities have been
produced, the cycle-slip detection process (that is, the
detection of discontinuities in the time series) can be
initiated.  Of the various methods available, only four will

be discussed here.  The most straightforward method is to
compute higher order time differences of the time series,
which accentuate any discontinuities.  This method is
used by many static GPS processing packages including
the University of New Brunswick’s DIPOP (DIfferential
POsitioning Program) software [Kleusberg et al., 1993].
The main disadvantages of this method are that data-set-
specific tolerance values have to be set (time difference
values that are greater than the tolerances indicate the
presence of a cycle slip), and geometry-free linear
combinations are required for kinematic data.  Another
method is to fit a low degree polynomial over the time
series and conclude that any large (again, determined for
the specific data set) discrepancies between the
polynomial and the time series represents a cycle slip
[Lichtenegger and Hofmann-Wellenhof, 1990].  This
method is also hampered by the number and size of slips
altering the shape of the fitting polynomial.  A popular
method, especially for kinematic data processing where
such filtering is used in the main processing stage is
Kalman filtering (e.g., Bastos and Landau [1988]; Han
[1997]).  An adjunct to this technique is the use of
wavelets rather than Kalman filtering [Collin and
Warnant, 1995].  The predicted time series values
estimated from the developed dynamic model in the
Kalman filter are compared with the actual data time
series.  Any statistically significant discrepancies are
representative of cycle slips.  However, filter tuning is
required to chose appropriate filter parameters for the data
set and unpredictable results can be obtained, at least with
undifferenced static data [Blewitt, 1998].  The final
method to be discussed was developed by Blewitt [1990]
and consists partially of applying a running average filter
to a linear combination to improve the estimate of the
combination’s ambiguity term.  Cycle slips are detected
by determining if two consecutive unfiltered data points
are outside the confidence interval of the running mean.
This method and the Kalman filtering approach have the
advantage that they use statistical information from the
data themselves in the detection process.

After cycle slips have been detected, the actual number of
L1 and L2 cycles that comprise each slip must be
determined and then the data corrected.  The latter is a
simple enough task, but the determination can require
additional information.  If single-frequency linear
combinations resulting in integer ambiguity values are
used (such as the single-frequency range residual), then
the integer number of cycles attributable to the slip can be
directly estimated.  If a dual-frequency combination is
used, then this single combination consists of two
unknowns: the slip in L1 and the slip in L2.  Therefore a
second linear combination is needed to uniquely solve for
the individual frequency slips.  This can be accomplished
by using one of the detection methods on a second linear
combination, not to detect a slip, but rather to estimate the
inter-frequency slip.  With this additional information, the



values of the L1 and L2 cycle slips can be uniquely
determined.  Various techniques can be used to fix the
estimates to integers, ranging from simple rounding to
searching for slip pairs that best fit the linear
combinations in a least-squares sense.  If viable integer
combinations cannot be determined, then additional
carrier phase ambiguity resolution parameters can be
introduced in the main data processing (e.g., Kleusberg et
al. [1993]; Seeber [1993]).

AN AUTOMATIC CYCLE-SLIP CORRECTION
TECHNIQUE
The technique presented here represents an evolution,
from static to kinematic and from semi-automatic to fully
automatic data handling in the DIPOP preprocessors, the
original versions of which are described in Kleusberg et
al. [1993].  After outlier detection and time tag correction,
two satellite-receiver, geometry-free linear combinations
are formed with the dual-frequency carrier phase and
pseudorange measurements, for each baseline double-
difference satellite pair.  The noisier of the two
combinations is filtered and cycle slips are detected on
each combination by means of various tests.  The filtered
combination is also filtered backwards and the data from
the two combinations are used in a least-squares,
polynomial fitting strategy to estimate the magnitude and
sign of the double-difference L1 and L2 cycle slips in the
time series.  The estimated slips are applied in a
correction routine.  A second round of identical detection
then takes place to verify correct determination.  If any
residual slips are detected, the determination and
correction routines are again initiated.

OBSERVABLE MODELS
The mathematical models for the raw carrier-phase and
pseudorange observables are

for the L1 frequency:

( ) ,mNdddtdTc 11111iontrop

111

ε++λ+−+−+ρ=
φλ=Φ

(1)

( ) 111iontrop1 eMdddtdTcP ++++−+ρ= , (2)

and for the L2 frequency:

( ) ,mNdddtdTc 22222iontrop
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ε++λ+−+−+ρ=
φλ=Φ

(3)

( ) 222iontrop2 eMdddtdTcP ++++−+ρ= , (4)

where Φi and Pi are the measured carrier phase and
pseudorange (in distance units), respectively; λi is the
carrier wavelength; φi is the measured carrier phase (in

cycles); ρ is the geometric range from receiver to the GPS
satellite; c is the vacuum speed of light; dT and dt are the
offsets of the receiver and GPS satellite clocks from GPS
Time, respectively; Ni is the number of cycles by which
the initial phases are undetermined; dioni and dtrop are the
delays due to the ionosphere and the troposphere,
respectively; mi and Mi represent the effect of multipath
on the carrier phases and the pseudoranges, respectively;
and εi and ei represent the effect of receiver noise on the
carrier phases and the pseudoranges, respectively.
Satellite and receiver hardware delays and other small
effects have been ignored as they have negligible effect
on data preprocessing.

By double differencing the observations (that is, at each
epoch differencing between receivers followed by
differencing between satellites) the clock offsets can be
removed and the linear combinations used in detection
and determination are closer to zero slope.  The latter
situation is helpful, since it accentuates the results of the
time differences in the detection by reducing (for short-
and medium-length baselines) the size of the ionospheric
term.  However, following the law of error propagation,
the random error in each double-difference is
approximately double that of the undifferenced data.  The
double-difference observables are

for the L1 frequency:
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and for the L2 frequency:
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222iontrop2 eMddP ∆∇+∆∇+∆∇+∆∇+ρ∆∇=∆∇ ,(8)

where ∇∆ is the double-difference operator.

DETECTION OBSERVABLES
Two detection observables were chosen so as not to
contain any component of satellite-receiver range and to
minimise measurement noise.  Therefore the two linear
combinations produce time series which are relatively
invariant to collection time, baseline separation, and static
or kinematic data collection modes, within the limits of
the residual ionosphere, multipath, and receiver noise.
The combinations chosen are the geometry-free phase and
the widelane phase minus narrowlane pseudorange.  The
L1 and L2 range residuals were not used, as the



measurement noise terms of these observables are greater
than that of the widelane phase minus narrowlane
pseudorange combination.  Both of the selected
combinations have been utilised for cycle-slip detection
by Blewitt [1990] for undifferenced static data, and by
Gao and McLellan [1996], and Gao and Li [1999] for
double-differenced short baseline static and kinematic
data.

Geometry-free phase
The first observable is the geometry-free phase linear
combination:

( ) ( )
( ) ( ) .mm

NNdd

2121

22111ion2ion

2211

ε∆∇−ε∆∇+∆∇−∆∇+
∆∇λ−∆∇λ+∆∇−∆∇=

φ∆∇λ−φ∆∇λ
(9)

This combination consists of inter-frequency double-
difference ionosphere, L1 and L2 double-difference
integer ambiguities, inter-frequency double-difference
phase multipath, and inter-frequency double-difference
receiver phase noise.  Han [1997] notes that this
combination has no integer ambiguity characteristic, but
such a quality is not required for the detection and
determination approach which follows, since the
individual L1 and L2 cycle slips are isolated in the
determination phase.  A cycle slip on the next (post slip)
epoch of this combination would result in the ambiguities
term being replaced with

( ) ( )[ ]222111 nNnN +∆∇λ−+∆∇λ , (10)

where n1 and n2 are the double-difference integer cycle-
slips (in cycles) on the L1 and L2 frequencies,
respectively.
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Figure 1: Variation in geometry-free phase
combination.

Figure 1 illustrates the behaviour of this observable for a
sample of data collected on a static baseline of
approximately 200 km.  In the figure, the geometry-free
phase time series has been differenced from the integer
value of its first data point to remove the majority of the
observable for which the ambiguity bias is the main
constituent.  This is done since the variation of the
combination is the important aspect in this analysis.  The
variations are primarily due to the ionospheric term
indicated in equation (9), whereas the phase multipath and
noise terms have much higher frequencies and lower
amplitudes.

Widelane phase minus narrowlane pseudorange
The second observable is the widelane phase minus
narrowlane pseudorange linear combination (e.g., Blewitt
[1990]; Gao and Li [1999]):
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where

( ) cm2.86
11

2
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14 ≈λ−λ=λ
−−− , (12)

usually referred to as the widelane wavelength and

( ) cm7.10
11

2
1

15 ≈λ+λ=λ
−−− , (13)

usually referred to as the narrowlane wavelength.

This combination consists of the widelane ambiguity, a
residual multipath term, and a residual receiver noise
term.  Not directly apparent from this formulation, the
ionospheric terms cancel since

Id
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1ion
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λ
= (14)

and
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2

2ion
λ−λ

λ
= , (15)

where I is the so-called ionospheric delay parameter.



Since the multipath and noise terms of the pseudorange
measurements are much larger than those of the carrier
phase measurement, the fluctuations in this combination
are mainly due to pseudorange multipath and pseudorange
measurement noise.  The former of these error terms can
cause quasi-sinusoidal variations of many metres.  A
cycle slip on the next (post slip) epoch of this
combination would result in the ambiguities term being
replaced with

( ) ( )[ ]22114 nNnN +∆∇−+∆∇λ . (16)

The noise of this observable makes high resolution cycle-
slip detection unlikely.  However, Blewitt [1990]
proposed a simple running average filter to make this
observable more useful.  This strategy is quite intuitive,
since over time one would expect the residual multipath
and noise terms to average down to near constant values.
The filter is an expanding-memory, low-pass filter whose
output is identical to the recursive mean:

( )1tt1tt xx
t

1
xx −− −+= , (17)

where x is the observation, x  is the mean of x, and t and
t-1 represent the present and previous epoch counts,
respectively.
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Figure 2: Variation in widelane phase minus
narrowlane pseudorange combination.  The
smooth line shows the running-average filtered
values.

Figure 2 depicts this combination for the same data set
used in Figure 1.  The noise level is substantially higher
than for the first combination, but this is tempered with
the filtering.  The running-average filtered results do not
follow the raw data as well as, for example, a moving-

average filter, especially due to the large amounts of
multipath at the start of the time series.  But as long as
there are no cycle slips, the running average is a better
estimate of the ambiguity bias given these large errors.

DETECTION TESTS
Two different cycle-slip detection tests are performed on
each time series of the created combinations.  The
geometry-free phase combination is first tested, since it
has the lower noise.
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Figure 3: Time difference of geometry-free
combination.

The first test investigates the variation of the time-
normalised, between-epoch time difference of the
geometry-free combination.  Figure 3 illustrates this
quantity with the data from Figure 1.  The principle used
here is that a discontinuity in a time series is more
pronounced in the time differences of that series, since
time differencing is analogous to high-pass filtering
[Hofmann-Wellenhof et al., 1997].  From past experience
with DIPOP [Kleusberg et al., 1993], a set of four time
differences are compared.  The median time difference is
differenced from the time difference value being tested.
The median rather than the mean is used here, as it was
found that the former is more robust.  For example, even a
severe gradient in the rate of change of the ionospheric
term will be almost completely removed in the second
time differencing.  The absolute value of this difference
leaves a very small component of the ionospheric,
multipath and noise terms, and an estimate of the cycle
slip, if any, on this combination.  Since a significant
amount of spatial and temporal correlation exists in the
three problematic terms, this differencing of differences
method is quiet robust.  The resulting value is differenced
from a slip tolerance.  In some software, (e.g., Kleusberg
et al. [1993]), this tolerance must be selected on a per data
set basis.  This human interaction has been removed in the



new approach by computing the time difference of the
smallest type of cycle slip that can consistently be
observed with this combination (from equation (10)),
e.g.,:

.cm5.2nn4n,5n 221121 ≈λ−λ⇒== (18)

More will be said about this slip pairing and the choice of
this pairing in the next section.

If a slip is detected, then the second test is carried out.
This test takes advantage of a property of time
differencing, which is illustrated in Figure 4: a
discontinuity at one epoch will appear as two
discontinuities adjacent in time.
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Figure 4: The effect of time differencing given
a discontinuity.

For the widelane phase minus narrowlane pseudorange
combination, a different approach is used due to the high
noise level of the combination.  A testing scheme
modelled after Blewitt’s [1990] technique for
undifferenced static data is used.  The double-differenced
measurements are filtered and the unfiltered data points
are compared with ±4σ of the filtered mean.

The recursive standard deviation is computed via Blewitt
[1990]

( )[ ]2
1t

2
1tt

2
1t

2
t xx

t

1
−−− σ−−+σ=σ , (19)

where σ is the biased sample standard deviation and the
other variables are as stated in (17).  The choice of the a
priori variance value is not critical, as the recursive
algorithm quickly determines variance values which are
representative of the data set being processed.

The meaning of this test is that any value outside the
expected ambiguity estimate (the running average
confidence interval) represents a possible cycle slip.  If
unfiltered data from previous and subsequent epochs lie
outside or within one cycle, respectively, of such a data
point, then a slip is declared.  If the one-sigma standard
deviation of the observations leading up to the potential
slip is greater than one widelane cycle an integer is
multiplied to the widelane cycle tolerance.  This is done
so that slips the size of which are below the noise level of
the observations are not detected as they may produce
type two errors.  One method of reducing the need for this
second test could be to use a moving average and
associated moving standard deviation.  While the moving
average would not be as good an estimate of the
ambiguity bias, the moving standard deviation would
better tolerate the effects of pseudorange multipath than
the running standard deviation.  Another option could be
to utilise the receiver signal-to-noise values as an
indicator of the combination noise.

An example of this testing is given in Figure 5.  The
unfiltered data are the same as in Figure 2, and the ±4σ
confidence intervals computed from equation (19) have
been added.
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Figure 5: Variations in widelane phase minus
narrowlane pseudorange combination with
associated ±4σ confidence intervals.

DETECTION INSENSITIVITY
Analysing equations (10) and (16) individually, there are
many combinations of cycle slips (n1 and n2) which could
be missed by the detection algorithms.  However as stated
by Gao and McLellan [1996], the presented two tiered
approach greatly reduces the number of slip pairs which
both combinations are insensitive to.  Table 1 lists all of
these pairs where the slip on the geometry-free
combination is less than or equal to one L1 cycle and the



slip on the widelane phase minus narrowlane pseudorange
is less than or equal to three widelane cycles.  From
experience, the geometry-free combination can be used to
consistently detect cycle slips as small as a few
centimetres, so only the combinations in bold italics are of
great concern.  These situations have been previously
identified by Gao and McLellan [1996], and represent the
rationale for the slip tolerance set in the geometry-free
phase detection tests.  These slip pairs will be discussed
further in the testing sections.

From the discussion of the detection test and Table 1, it
can be seen that most cycle slips will be detected with the
use of the geometry-free combination.  And that the
widelane phase minus narrowlane pseudorange is used to
detect rare types of slips and allow for, along with the
geometry-free combination, the determination of the
individual double-differenced L1 and L2 frequency cycle-
slip estimates.

n1 n2 n1λ1-n2λ2 (cm) (n1-n2)λ4 (cm)
  1   1  -5.4  0
  2   1  13.6   86.2
  2   2 -10.8  0
  3   2    8.3   86.2
  3   3 -16.2  0
  4   3    2.9   86.2
  5   4  -2.5   86.2
  6   5  -7.9   86.2
  7   5  11.1 172.4
  7   6 -13.3   86.2
  8   6    5.7 172.4
  8   7 -18.7   86.2
  9   7     0.3 172.4
10   8   -5.1 172.4
11   9 -10.5 172.4
12 10 -15.8 172.4

Table 1: Combination-insensitive cycle-slip
pairings.

DETERMINATION
In order to precisely estimate the double-difference cycle
slips in the given combinations, the geometry-free phase
and widelane phase minus narrowlane pseudorange time
series for each double-difference pair are integrated in a
Chebyshev polynomial, least-squares fitting scheme.

To utilise the widelane phase minus narrowlane
pseudorange combination, the forward and backward runs
of the filter are combined to optimally smooth the time
series.  Following Gelb [1974], the optimal smoothed
estimate (unbiased and of minimum variance) is

( ) ( ) ( )[ ]
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+=

+=
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where the subscripts F, B, and S indicate forward filter,
backward filter, and smoother, respectively; x̂ is the linear
combination estimate; and C is the covariance matrix.
The covariances for the forward and backward filter are
estimated from equation (19).

With noisier data it was observed that the smoothing
produced roughness at either end of the time series and on
either side of detected cycle slips (the so-called “bow-tie”
effect).  This could cause errors in the slip estimation.  To
compensate for this, testing was carried out using only
data from the forward filter before a cycle slip and data
from the backward filter after the slip.

The next step is the polynomial fitting.  Chebyshev
polynomial fitting was chosen for DIPOP [Kleusberg et
al., 1993] since it nearly completely minimises the
maximum residuals in the fit, making it a very robust
technique.  The Chebyshev polynomials are computed
based on normalised time series time:

( ) ( )[ ]tcoskcostT 1
k

−= , (21)

where Tk(t) is the kth Chebyshev polynomial base function
at time t. A linear parametric least-squares fit of the
polynomials to each linear data combination is then
carried out in order to estimate the Chebyshev polynomial
coefficients and more importantly the estimates of the
cycle slips in each combination.  This is represented by

( ) ( ) ( )tobsCtTtcs
n

1k
k1k =+ ∑

=
− , (22)

where cs is a cycle slip, T is a Chebyshev polynomial
term, C is a polynomial coefficient, and obs is the time
series value.  From static DIPOP experience, a
polynomial of approximately order 30 is typically used,
but it may be appropriate to increase this value by making
it a function of the number of epochs of data and the noise
level of the widelane phase minus narrowlane
pseudorange combination.  The combination cycle slips
and the polynomial coefficients are estimated in a
parametric least-squares adjustment along with the
residuals of the least-squares fit.  The combination slip
estimates, the fit residuals, and the combination
observations are then combined in a weighted parametric
adjustment to estimate real-valued double-difference L1
and L2 cycle slips.  These results are then rounded to
obtain integer estimates.



Figure 6 illustrates an example of the determination
procedure for a one-cycle cycle slip on L1.  The
differences in the fitted polynomials before and after the
slip for each combination agree well with the theoretical
values: 19.0cm for the geometry-free phase and 86.2cm
for the widelane phase minus narrowlane pseudorange.
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Figure 6: Determination of cycle slip.  Thin
lines represent combinations and thick, light
lines represent fitted polynomials.

STATIC DATA TESTING
In order to test the detection and determination strategy
both static and kinematic data were processed.  The
former is presented here and the latter in the next section.

Static data testing was deemed appropriate, since it allows
for a “truth solution” to be determined with a semi-
automated technique, using less noisy phase combinations
in the cycle-slip correction process.  The data set used
consists of an approximately 200 km long baseline.  The
data contain a significant amount of multipath (as seen in
Figures 1 and 2), which stem from ground and wall
bounce multipath at one of the antenna locations.  Such a
corrupted data set is representative of an extreme
environment and therefore provides a good test of
robustness for the described slip correction technique.

The results using this strategy produced the same detected
and repaired cycle slips as with the manual processing
strategy.  The first geometry-free combination test detects
a number of cycle slips erroneously, but the second test
indicates from differencing that these apparent
discontinuities are not cycle slips.  The widelane phase
minus narrowlane pseudorange test does not incorrectly
detect any slips, and the smoothing of these time series
allow for precise estimation of the L1 and L2 slips.  An
example of a detected slip is shown in Figure 7.  The slip

can be observed at approximately 40.4 hours on this time
difference of the geometry-free combination.  The slip is
equal to two double-difference cycles on L1 and two
double-difference cycles on L2, and therefore is not
detectable on the widelane phase minus narrowlane
pseudorange combination (see Table 1).
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Figure 7: Detected cycle slip in static data
using geometry-free phase combination. The
almost continuously horizontal lines are the
slip tolerances for the first geometry-free phase
detection test.

The above detection could be made much more difficult
during periods of large ionospheric fluctuations, when the
ionospheric term represents the main noise contributor in
the geometry-free phase combination.  Gao and McLellan
[1996] indicated that a few-epoch moving average of the
geometry-free phase combination subtracted from the
actual combination can greatly reduce the effect of the
ionospheric term, as long as the multipath is insignificant.
Blewitt [1990] describes avoiding large discontinuities
due to the changing ionospheric conditions by using a
high data collection rate.

KINEMATIC DATA TESTING
The kinematic tests involve a marine situation, in which
the vessel data were collected at an average distance of 40
km from the reference receiver.  This data set is
representative of typical measurement conditions.  The
“truth solution” was obtained via a complex Kalman
filtering procedure with manual verification.  The results
using the presented strategy compare favourably with the
Kalman filtering results in that both processing techniques
produce the same results.
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Figure 8: Detected cycle slip in kinematic data
using geometry-free phase combination.

Given that Table 1 indicates various problematic cycle-
slip pairs, slip pairs of this kind were injected into this
kinematic data set to test the technique’s sensitivity.  The
results indicate that, with the tested data set, the most
sensitive pairings described in Table 1 can be detected
and corrected with this technique.  For example, the effect
of the pairing n1 = 5, n2 = 4 can be clearly seen in Figure 8
at approximately 10 minutes.  The time differencing of
the geometry-free combinations greatly accentuates the
slip and it can be detected unambiguously.

CONCLUSIONS AND FUTURE RESEARCH
A completely automatic cycle-slip detection,
determination, and repair technique has been developed to
preprocess dual-frequency, kinematic (and static) GPS
data.  The individual algorithms stem from research
performed by various authors, and combined here in a
novel procedure.  The technique relies on the detection of
cycle slips via two geometry-free linear combinations of
the dual-frequency GPS measurements, namely the
geometry-free phase and the widelane phase minus
narrowlane pseudorange.  Slips are detected for each
combination via a number of geometric and statistical
tests, the results of which when combined represent a
high-resolution, yet straightforward method for detecting
cycle slips.  The determination of detected slips is
performed by integrating the two combinations in a
Chebyshev polynomial, least-squares fitting scheme.

Results using extremely noisy static and typical kinematic
data, with both actual and simulated cycle slips, indicate
that the technique is correctly detecting and repairing
cycle slips (and only needed marginally increased
processing time).  Given that data sets vary significantly
in the numbers and size of cycle slips and levels of

ionospheric delay, multipath and noise, more testing is
required in order to further validate the performance of
the technique.  Possible improvements to the algorithms
include the use of a moving standard deviation for
detection on the widelane phase minus narrowlane
pseudorange, and the use of receiver signal-to-noise
values for the noise estimation.  Determination may be
improved with the use of fitting polynomials better
tailored to the data, and the use of other geometry-free
combinations.
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