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ABSTRACT  
 
Although significant improvements in handling the 
unmodelled atmospheric (i.e., ionospheric and 
tropospheric) delays for long-range RTK (real-time 
kinematic) applications have been made by many research 
groups over the world, it is often found that the residual 
tropospheric delay is still the most problematic error 
source for such applications. One of the most challenging 
issues with respect to the residual tropospheric delay is 
that the two coefficients associated with the tropospheric 
zenith delay and the up component of a positioning 
solution (i.e., the tropospheric mapping functions and the 

up components of the design matrix) are almost linearly 
correlated above a 20 degree elevation angle. In this case, 
variations in the tropospheric zenith delay are almost 
indistinguishable from those in the up component at high 
elevation angles. In the conventional approaches, 
satellites being observed at low elevation angles can help 
the least-squares estimator break up the correlation 
associated with two parameters. If no satellite is available 
at low elevation angles, an adaptive estimator of the 
tropospheric zenith delay can relieve the problem to some 
degree. 
 
In this paper, we propose a new approach to overcome the 
challenges associated with the residual tropospheric delay. 
The tropospheric zenith delay and the up component of a 
positioning solution combine into a single parameter to 
remove the ill-conditioned problem induced by the 
correlation of two parameters. This new parameterization 
coincides with a weighting process of the tropospheric 
mapping functions and the up components of the design 
matrix using a scale factor. The main features of the new 
approach are highlighted, including compatibility, 
controllability, singularity and redundancy.  
 
INTRODUCTION 
 
The demand for precise and reliable positioning is ever 
increasing in the industrial as well as in the consumer 
field. Industrial and commercial activities could be made 
more cost-effective and even new services could be 
launched if precise and reliable positioning would be 
possible for all the needs arising. There are a number of 
existing and emerging applications which require real-
time processing, high data rates (up to a 100 Hz), and 
high accuracy (better than a few cm) over long-ranges (up 
to a few 100s of km) with possible high platform 
dynamics. The most common approach for achieving high 
performance with GPS technology in such demanding 
applications is RTK-style processing. For example, RTK 
technology has been used for machine guidance and 
control such as gantry crane auto-steering, precision 



2/12 

farming and agriculture, robotic lawnmowers, automated 
ground vehicles and so on. Amongst the requirements of 
such demanding applications, the ability of long-range 
RTK has been mainly driven by economic reasons and 
eventually, turns out to be a major trend in the market.  
 
As an efficient approach to accomplishing long-range 
RTK, network RTK based on multiple reference stations 
has been used [Fotopoulos and Cannon, 2001; Wubbena 
et al., 2001; Landau et al., 2002; Rizos, 2002; Kashani et 
al., 2004]. The integration of several reference stations 
into a combined network provides a capability for 
modeling the error sources at a rover within the network 
and enables lengthening the baselines up to a few 100s of 
km. 
 
Despite successful implementation of network RTK for 
long-range applications, however, its performance is not 
always comparable to single-baseline RTK operating 
under short-range situations. As network RTK 
interpolates error corrections for a rover using the error 
estimates at reference stations, this approach is vulnerable 
to localized anomalous errors under unfavourable 
atmospheric conditions. For example, weather fronts and 
atmospheric conditions associated with heavy rainfall (but 
not the rain itself) can cause rapid variations in the 
tropospheric delay [Gregorius and Blewitt, 1998] and 
subsequently, the performance of an RTK system can be 
significantly degraded even across relatively short 
baselines [Skidmore and Van Graas, 2004; Lawrence et 
al., 2006]. Also, solar-terrestrial interactions can cause 
significant changes in the morphology of the ionosphere, 
changing the propagation delay of GPS signals [Langley, 
2000]. During severe ionospheric activity, the correction 
accuracy deteriorates and adversely affects the ambiguity 
resolution over the network [Petrovski et al., 2002; 
Wielgosz et al., 2005].  
 
These localized anomalies in the tropospheric and 
ionospheric delays are not cancelled in the interpolation 
procedure used for deriving rover delays. Another 
challenging situation takes place when a rover is located 
outside the network boundary. Under such an exceptional 
situation, network RTK must extrapolate error corrections 
for the rover to provide seamless RTK solutions. In 
localizing and extrapolating error corrections, network 
RTK can face the same challenges as single-baseline RTK. 
 
UNB’s Previous Work 
 
Our previous approach for meeting the challenges related 
with long-range RTK applications was to develop a 
practical long-range, single-baseline RTK technique 
which overcomes pitfalls in the conventional single-
baseline RTK and complements network RTK, as well. 
This approach was based on a well proven RTK structure 

which typically consists of a 3-step procedure: a float 
ambiguity solution, ambiguity search and validation, and 
a fixed ambiguity solution. Originally, this structure was 
built for short-range RTK applications and has satisfied 
most high performance requirements. In fact, this 
structure is still feasible for long-range RTK applications 
if a few add-on features are carefully developed and 
choreographed. These add-on features include new 
techniques for handling the tropospheric and ionospheric 
delays: an adaptive estimator for the tropospheric zenith 
delay and an ionosphere-nullification technique [Kim and 
Langley, 2005; 2007a; 2007b]. The main features of our 
previous approach are highlighted below. 
 
Given L1 and L2 DD (double-differenced between 
satellites and receivers) carrier-phase observation 
equations, the unknown parameters can be deliberately 
separated into three sub-groups, including receiver 
position and tropospheric delay, ambiguity and 
ionospheric delay, and satellite orbit error.  
 
Since the effect of satellite navigation message orbit 
errors is insignificant for baselines up to a few 100s of km 
and can be virtually eliminated using the International 
GNSS Service (IGS) ultra-rapid orbit products, it can be 
safely neglected in real-time applications. Using the well-
known “rule of thumb” validated using IGS data, an 
approximate baseline component error becomes around 1 
cm over a baseline of 100 km with around 2 m orbital 
error [Beutler, 1998; Ziebart et al., 2002]. 
 
As is well known, the ionospheric delays can be derived 
from the geometry-free combination (that is, the 
difference of L1 and L2 carrier-phase observations in 
distance units) once the L1 and L2 ambiguity parameters 
are known. This implies that the ionospheric delays are 
dependent on the ambiguity parameters and consequently, 
can be estimated in the ambiguity search process. This is 
the key idea of the ionosphere-nullification technique (i.e., 
ionosphere-free ambiguity search process) [Kim and 
Langley, 2005; 2007a]. Compared with the conventional 
short-range RTK ambiguity search process, some effort 
must be extended in building an efficient ambiguity 
search engine because this technique requires a search 
engine that simultaneously determines the L1 and L2 
ambiguities. 
 
The receiver position and tropospheric delays can be 
instantaneously estimated at every epoch using least-
squares estimation in conjunction with the ionosphere-
nullification technique. In this case, the degree of 
correlation between satellite geometry (connected with 
the receiver position) and tropospheric mapping functions 
(connected with the tropospheric zenith delay) turns out to 
be critical to the performance of the least-squares 
estimator. Generally, an error in the tropospheric zenith 
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delay is almost indistinguishable from the unmodelled 
height component at high elevation angles because the 
two parameters are highly correlated. To break up their 
correlation, satellites observed at low elevation angles 
must be included in the observation equations. However, 
satellites observed at low elevation angles are not always 
favourable because the GPS signals are more susceptible 
to the errors (e.g., multipath) and the receiver system 
noise at low elevation angles. 
 
In case no satellites are available at low elevation angles, 
an adaptive estimator of the tropospheric zenith delay can 
be introduced in the observation equations. Since the 
tropospheric delays will not vary dramatically under a 
typical atmospheric condition over a short time period, it 
might be better to estimate adaptively the tropospheric 
zenith delay. This can be done by introducing a forgetting 
factor which is the reciprocal of the correlation time (or a 
smoothing time interval). This adaptive estimator can 
capture the changes of satellite geometry and mapping 
functions over a relatively short time period, enabling the 
tropospheric zenith delay to be distinguished from the 
height component correction.  
 
PROPOSED APPROACH 
 
As a matter of fact, the residual tropospheric delay is still 
the most challenging error source for long-range RTK 
applications. In our previous approach [Kim and Langley, 
2007b], the ionosphere-nullification technique does not 
require any a priori information of the ionospheric delays 
in resolving the L1 and L2 ambiguities while the 
prediction values of the residual tropospheric delays are 
fed into the least-squares estimation. Therefore, incorrect 
prediction values of the residual tropospheric delays can 
deteriorate the overall performance of the ambiguity 
search process and eventually, may result in incorrect 
positioning solutions. This situation is more likely to 
occur if no satellite is available at low elevation angles 
and/or the adaptive estimator of the tropospheric zenith 
delay fails to track varying atmospheric conditions. 
 
Two approaches have been proposed to obtain more 
realistic prediction values of the residual tropospheric 
delays. Using the ionosphere-free linear combination, a 
sequential least-squares estimator can be implemented as 
a parallel process to predict the residual tropospheric 
delays at a given epoch. This estimator has been used in 
conventional long-range, single-baseline RTK. If the error 
corrections of the tropospheric delays are available from 
network RTK, they can be also used as (a priori) 
prediction values. Using either of the tropospheric 
prediction values, the proposed approach can be 
implemented in a back-up process to complement 
network RTK.  
 

In this paper, we further propose a new approach to 
overcome the challenges associated with the residual 
tropospheric delay. This approach combines the residual 
tropospheric delay and the height component of the 
positioning solution into a single parameter to remove a 
singularity problem due to the correlation of the two 
parameters. 
 
The Observation Model 
 
The DD carrier-phase observations are used in our 
approach. The linearized GPS carrier-phase observation 
model for long-range single-baseline applications is given 
as: 
 

[ ], , 1 or 2,i i i i i i iCov iλ= + + − + + = =yy Hx s T I N e e Q
 (1) 
 
where y is the vector of DD carrier-phase observation 
differences in distance units; [ ]Tdn de du=x  is the 
vector of unknown baseline component increments given 
in local geodetic coordinates (i.e., dn-north, de-east and 
du-up component); s is the vector of orbit error 
contributions to the DD carrier-phase observations; T is 
the vector of DD tropospheric delays;  I is the DD first 
order ionospheric delay parameter vector where 

( )2 2
2 1 2 1/L Lf f=I I ; H is the design matrix corresponding to 

x; N  is the vector of DD ambiguities; f and λ  are the 
frequency and wavelength of the carrier-phase 
observations, respectively; e is the noise vector including 
multipath, residual ionospheric delay (e.g., higher-order 
ionospheric effects [Bassiri and Hajj, 1993; Hoque and 
Jakowski, 2007]) and receiver system noise; [ ]Cov ⋅  
represents the variance-covariance operator; yQ  is the 
variance-covariance matrix of the observations; and i 
indicates the L1 or L2 signal.  
 
By parameterizing the tropospheric delay T (see 
Appendix), and ignoring the orbit error term s in Eq. (1), 
we will have a new carrier-phase observation model for 
long-range single-baseline applications as:  
 

[ ], , 1 or 2,i w wz i i i i i iCov iτ λ′ = + − + + = =yy Hx m I N e e Q
 (2) 
 
where i i h′ = −y y T ; hT  is the vector of the hydrostatic (or 
dry) delay; wm  is the vector of the non-hydrostatic (or 
wet) mapping functions;  and wzτ  is the wet zenith delay. 
It is assumed in Eq. (2) that the hydrostatic delay hT  can 
be computed using accurate real-time meteorological data 
available at a reference station and a rover. In addition, it 
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is assumed that horizontal atmospheric gradients and 
azimuthal asymmetry are insignificant under typical 
atmospheric conditions.  
 
Motivations 
 
As mentioned previously, variations in the tropospheric 
zenith delay are almost indistinguishable from those in the 
up component at high elevation angles because the two 
parameters are highly correlated. Figure 1 shows the 
relationship between the two coefficients – the wet 
mapping function wm  and the up component of the 
design matrix uh  – associated with the wet zenith delay 

wzτ  and the up component increment du of a positioning 
solution, respectively. The top and middle panels show 
the behaviour of two coefficients corresponding to the 
elevation angles, respectively. The bottom panel shows 
the relationship of the two coefficients. As illustrated in 
the example of Figure 1, the two coefficients are almost 
linearly correlated above a 20 degree elevation angle, 
which means that wzτ  and du will have almost 100% 
correlation. At a low elevation angle (e.g., lower than 10 
degrees), their correlation becomes much weaker. 
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Figure 1. Relationship between the wet mapping function 
( wm ) and the up component of the design matrix ( uh ). 

 
Generally, the performance of the least-squares estimator 
will deteriorate if the parameters to be estimated are 
highly correlated. Typically, satellites being observed at 
low elevation angles can help the least-squares estimator 
break up the correlation associated with wzτ  and du. If no 
satellite is available at low elevation angles, an adaptive 
estimator of the tropospheric zenith delay can relieve the 
problem to some degree. 
 
As far as we know, no one has yet tried another approach 
to overcome the correlation problem. Since wzτ  and du 

are aligned essentially in the same zenith direction for 
most stable positioning application (see Figure 2), the two 
parameters can be combined into another single parameter 
also aligned with the zenith direction. 
 

 
 
Figure 3. Geometrical relationship between the wet zenith 

delay and the up component increment of a positioning 
solution. 

 
New Parameterization 
 
To derive a mathematical expression for the new 
parameter, we can re-group the unknown parameters. 
Note that the ionospheric delay I and ambiguities N are 
resolved in the ambiguity search process using the 
ionosphere-nullification technique. Therefore, we leave 
them out in the equations hereafter. 
 

[ ]

[ ] [ ]

, 1 or 2i w wz
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wz

i
dn
de
du

dudn
de

τ

τ

τ

′ = + + =

⎡ ⎤
⎢ ⎥= + +⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤
= + +⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

y Hx m

h h h m

h h h m

  (3) 

 
The second term of the last line in Eq. (3) can be further 
expressed as: 
 

,u w wzdu duα ατ+ =h m h     (4) 
 
where ( )wzdu duα τ= +  is the new parameter combining 
the wet zenith delay and the up component, and  αh  is the 
vector of new coefficients corresponding to the new 
parameter, given as: 
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(1 )

wz
u w

u w

du
du duα

α α

τ

α α

= +

= + −

h h m

h m
    (5) 

 
and 
 

du
duα

α = .     (6) 

 
By substituting Eqs. (4), (5) and (6) into Eq. (3), we will 
have a new observation equation as: 
 

[ ] , 1 or 2i n e

dn
de i

du
α

α

⎡ ⎤
⎢ ⎥′ = + =⎢ ⎥
⎢ ⎥⎣ ⎦

y h h h   (7) 

 
Main Features 
 
The new parameterization with respect to the wet zenith 
delay and the up component coincides with a weighting 
process of the wet mapping function wm  and the up 
component of the design matrix uh  using a scale factor α. 
Once α is determined, we can carry out the least-squares 
estimation using Eq. (7). For a given α, therefore, we can 
solve duα  in the least-squares estimation, which 
subsequently provides a backward solution of du  and wzτ  
as: 
 

wz wz

du du du
du

du du du du

α
α

α α

α α

τ τ

= → = ⋅

= + → = −
   (8) 

 
A few main features of the new approach are highlighted 
below. More details are discussed in the section “Test 
Results”. 
 
 Compatibility 

The LSα  derived by the (original) least-squares 
estimator in Eq. (2) gives an identical backward 
solution of du  and wzτ . 

 
 Controllability 

A given α determines a unique solution of  du  and 
wzτ , which enables us to control the estimation 

process. 
 
 Singularity 

Avoiding a direct inverse with respect to [ ]u wh m  
solves the singularity problem of the least-squares 
estimator. 

 
 Redundancy 

Combining du  and wzτ into a single parameter 
increases the degrees-of-freedom of the least-squares 
estimator. 

 
 
TEST RESULTS 
 
Two GPS reference stations had been deployed at the 
Canadian Coast Guard building in Saint John, New 
Brunswick (CGSJ) and at the Digby Regional High 
School in Digby, Nova Scotia (DRHS), on either side of 
the Bay of Fundy, near the terminals of an approximately 
74 km marine ferry route (see Figure 4). Two geodetic-
grade receivers (NovAtel DL-4 receivers and GPS-600 
antennas) had been installed at the reference stations. 
Also, the same type of receiver had been installed on the 
ferry – the Princess of Acadia. Surface meteorological 
equipment had also been collocated with the three 
receivers. This ferry repeats the same routes between two 
and four times daily, depending upon the season. The Bay 
of Fundy is located in a temperate climate region with 
significant seasonal tropospheric variations (e.g., 
temperatures between -30°C and +30°C). Data had been 
collected over the course of one year from the daily ferry 
runs. 
 

−67 −66.5 −66 −65.5 −65 −64.5
44

44.5

45

45.5

CGSJ

DRHS
BAY OF FUNDY

74 km

NEW BRUNSWICK

NOVA SCOTIA

Test Site [CGSJ−DRHS, 21 MAY 2004]

L
at

it
u

d
e 

[d
eg

]

Longitude [deg]

  The ferry boat repeats
  this route 2−4 times daily.

 
Figure  4.  Test site for long-range, single-baseline RTK. 

 
Test Data 
 
To validate the success of our approach, we processed an 
approximately 1-hour sample of the data recorded at a 1 
Hz data rate at the pair of base stations (CGSJ and DRHS) 
on 21 May 2004. We used a zero degree elevation cutoff 
angle for data processing. Only static data were processed 
for this preliminary study. In this case, although test data 
was recorded in static mode, the data was processed as if 
it was obtained in kinematic mode. CGSJ was treated as 
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the base station and DRHS as the rover. Figure 5 shows 
the number of satellites recorded and the elevation angles 
of the satellites observed.  
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Figure 5. Number of satellites and elevation angles. 
 
Two quality indicators are illustrated in Figure 6. In 
general, they can be related with the quality information 
of the parameters being estimated. The top panel shows 
the dilution of precision (DOP) values (i.e., satellite 
geometry factors) with respect to the horizontal 
component (north and east, HDOP), the vertical 
component (up, VDOP), and the wet zenith delay (τDOP), 
respectively. The bottom panel shows the correlation 
coefficients between the up component and the wet zenith 
delay ( wzdu-τ ), the north component and the wet zenith 
delay ( wzdn-τ ), and the east component and the wet zenith 
delay ( wzde-τ ). 
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Figure 6. DOP values and correlation coefficients. 

 
As illustrated in Figure 6, the horizontal geometry of the 
satellites (HDOP) is good over the hour data processing 
session. On the other hand, the vertical geometry (VDOP) 

is not good and changing over the period. Therefore, the 
up component of the positioning solution will be more 
susceptible to the errors in the observations. As shown in 
the bottom panel, the correlation between the east position 
component and the wet zenith delay is weak while the 
north component is somehow correlated with the wet 
zenith delay. On the other hand, the correlation between 
the up component and the wet zenith delay is very strong. 
Therefore, an error in the tropospheric zenith delay is 
almost indistinguishable from a change in the up 
component. Also, an error in the tropospheric zenith delay 
can be transferred to some degree into the north 
component. 
 
Previous Approach 
 
The bottom panel in Figure 8 shows the wet zenith delays 
estimated at every epoch, without the assumption of 
atmospheric azimuthal asymmetry and use of gradient 
estimation. Three different types of wet zenith delay 
estimators are used, including an epoch-by-epoch 
estimator k̂τ , an adaptive estimator kτ , and a fixed value 

kτ . The fixed value of the wet zenith delay, which gave 
the best positioning solutions (compared with the known 
coordinates) at 0.028mkτ = , was determined by 
processing the approximately 1-hour sample of the data 
recorded at a 1 Hz data rate. These positioning solutions 
were used as the reference solutions for comparison 
hereafter. The adaptive estimator was decided by a 
forgetting factor ( )0.001β =  which is reciprocal to a 
smoothing time interval. In this case, the equivalent 
smoothing time interval was a 1000 seconds 
(= ( ) ( )1/ 1/ data rateβ ⋅ ). The epoch-by-epoch estimator 
corresponds to the least-squares estimation of Eq. (2). 
 

 
Figure 8. Comparison of the vertical solutions 

corresponding to the wet zenith delay estimators. 
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Figure 9. Comparison of the horizontal solutions 
corresponding to the wet zenith delay estimators. 

 
As illustrated in Figure 8, the up solutions show a clear 
dependency on the wet zenith delay estimators. The up 
solutions determined by the epoch-by-epoch estimator are 
noisy and apt to be biased. The adaptive estimator 
provides less noisy but slowly converging up solutions. 
On the other hand, the overall difference in the horizontal 
solutions determined by the wet zenith delay estimators is 
insignificant as shown in Figure 9. As explained 
previously, however, the north solutions are affected to 
some degree by an error in the wet zenith delay. 
 
Compatibility 
 
The up component and the wet zenith delay determined 
by the (original) least-squares estimation using Eq. (2) are 
identical to the backward solution in Eq. (9) if the 
weighting factor α is given as: 
  

ˆ
ˆ ˆLS

wz

du
du

α
τ

=
+

,     (10) 

 
where ˆdu  and ˆwzτ  represent the (original) least-squares 
estimates of the up component and the wet zenith delay, 
respectively. Figure 10 shows that the new approach is 
completely equivalent to the (original) least-squares 
estimation. The compatibility implies that the (original) 
least-squares estimation is a special case of the proposed 
approach. 
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Figure 10. Compatibility of the new approach with the 

(original) least-squares estimation. 
 
Controllability 
 
The most powerful aspect of the proposed approach is 
that the estimation process is controllable using α. Figure 
11 shows a new α transformed from the original α given 
by Eq. (10). The vertical (red) line in each panel indicates 
the α value minimizing the weighted sum of the squared 
residuals (vTPv). Various quality measures such as DOP 
values, correlation coefficients, variances and so on have 
been used to formulate a transformed α. So far, the 
solution is more or less based on trial and error. More 
investigations will be carried out for establishing an 
optimal procedure in formulating the transformed α in the 
near future. 
 

 
Figure 11. A transformed α controlling the estimation 

process. 
 
The performance of the proposed approach in terms of 
controllability is illustrated in Figures 12, 13 and 14. In 
each figure, the top panel shows positioning solutions 
estimated by the (original) least-squares estimation using 
Eq. (2). The middle panel shows the transformed α values. 
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Transformed

Original

Transformed



8/12 

The bottom panel shows positioning solutions estimated 
by the new approach using Eq. (7). In both the top and the 
bottom panels, three different types of wet zenith delay 
estimators were used, including an epoch-by-epoch 
estimator k̂τ  (a blue line), an adaptive estimator kτ  (a red 
line), and a fixed value kτ  (a green line). Compared with 
the (original) least-squares estimation, no significant 
change was found in the horizontal solutions. However, 
the estimates of the up components were significantly 
improved when using the proposed approach. 
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Figure 12. Comparison of the northing solutions. 
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Figure 13. Comparison of the easting solutions. 
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Figure 14. Comparison of the up solutions. 
 
If any unmodelled error in Eq. (2) is unbiased, both 
approaches will give an identical solution. However, if 
there is any biased error in the observations, the solution 
of the (original) least-squares estimation will be biased in 
the end. On the other hand, the proposed approach is able 
to de-weight the errors using the transformed α values and 
eventually, can determine an unbiased solution.   
 
Singularity and Redundancy 
 
By avoiding a direct inverse with respect to [ ]u wh m  in 
Eq. (3), the proposed approach solves the singularity 
problem intrinsic in the (original) least-squares estimation. 
Also, the new approach combines du  and wzτ into a 
single parameter, which consequently, increases the 
degrees-of-freedom of the estimation process. To 
demonstrate these outstanding features, a simulation test 
was performed. We imposed a 20 degree elevation cutoff 
angle in processing the original data set. Compared with 
Figures 5 and 6, this simulation set-up resulted in a poor 
geometry especially in the vertical direction (see Figure 
15). Also, the correlation between the up component and 
the wet zenith delay in the bottom panel became stronger. 
 
Figures 16 and 17 show the solutions estimated by the 
(original) least-squares estimation. These solutions are 
compared with the reference solutions mentioned in the 
section “Previous Approach”. As illustrated in Figure 16, 
the simulation did not alter the horizontal solutions 
significantly. On the other hand, the performance of the 
(original) least-squares estimation with respect to the up 
component and the wet zenith delay was very poor (see 
Figure 17). 
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Figure 15. Quality information of the simulation test. 
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Figure 16. Comparison of the horizontal solution. 
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Figure 17. Comparison of the vertical solution and the wet 

zenith delay. 
 
Figure 18 shows the performance of the proposed 
approach using the data with a 20 degree elevation cutoff 
angle. This data mimics a poor geometry scenario. Again, 

the top panel shows positioning solutions estimated by the 
(original) least-squares estimation using Eq. (2). The 
middle panel shows the transformed α values. The bottom 
panel shows positioning solutions estimated by the new 
approach using Eq. (7). In both the top and the bottom 
panels, three different types of wet zenith delay estimators 
were used. Compared with the (original) least-squares 
estimation, the new approach improves the up solutions 
significantly by solving the singularity problem as well as 
increasing the redundancy of the estimation process. 
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Figure 18. Comparison of the up solutions. 
 
SUMMARY 
 
One of the major challenges in resolving ambiguities for 
longer baselines is the presence of unmodelled 
atmospheric (i.e., ionospheric and tropospheric) delays. In 
our previous work, we proposed the ionosphere-
nullification technique which can virtually eliminate the 
large first-order ionospheric effects using the ionosphere 
observable in the simultaneous L1 and L2 ambiguity 
search process. We also proposed the adaptive estimator 
for estimating the tropospheric delays. Although we have 
significantly improved the handling of the unmodelled 
atmospheric delays, we have often found that the residual 
tropospheric delay is still the most challenging error 
source for long-range RTK applications. 
 
Theoretically, the two coefficients associated with the 
tropospheric zenith delay and the up component of a 
positioning solution – the tropospheric mapping functions 
and the up components of the design matrix – are almost 
linearly correlated (i.e., almost 100% correlation) above a 
20 degree elevation angle. Therefore, the tropospheric 
zenith delay is almost indistinguishable from the up 
component at high elevation angles. If the parameters to 
be estimated are highly correlated, the performance of the 
least-squares estimator will deteriorate. In this respect, 
satellites observed at low elevation angles can help the 
least-squares estimator break up the correlation associated 
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with the two parameters. If no satellite is available at low 
elevation angles, an adaptive estimator of the tropospheric 
zenith delay can relieve the problem to some degree. 
 
In this paper, we proposed a new approach to overcome 
the challenges associated with the residual tropospheric 
delay. This approach combines the tropospheric zenith 
delay and the height component of the positioning 
solution to remove the singularity problem induced by the 
correlation of two parameters. Since the two parameters 
are aligned essentially in the same zenith direction, they 
can combine into another single parameter pointing at the 
zenith direction. This new parameterization corresponds 
to a weighting process of the wet mapping functions and 
the up components of the design matrix using a scale 
factor.  
 
We highlighted a few main features of the new approach 
in this paper. The original least-squares estimation is a 
special case of the proposed approach (compatibility). 
The solution of the original least-squares estimation will 
be biased if there is any biased error in the observations. 
However, the proposed approach is able to de-weight the 
errors using a scale factor and eventually, can determine 
an unbiased solution (controllability). By avoiding a 
direct inverse with respect to the wet zenith delay and the 
up component, the proposed approach solves the ill-
conditioned problem intrinsic in the original least-squares 
estimation (singularity). Also, the new approach combines 
two parameters into a single parameter, which 
consequently, increases the degrees-of-freedom of the 
estimation process (redundancy).  
 
Future Work 
 
The most powerful aspect of the proposed approach is 
that the estimation process is controllable using a scale 
factor. To formulate a generalized scale factor, we have 
used various quality measures such as DOP values, 
correlation coefficients, variances and so on. We have 
achieved reasonable results based on trials and errors. We 
plan to investigate further this issue in the near future. 
 
In this paper, the approach was based on typical 
atmospheric conditions. More specifically, it was assumed 
that horizontal atmospheric gradients and azimuthal 
asymmetry are insignificant under typical atmospheric 
conditions. Further investigation will be carried out to 
validate if the approach will still work under abnormal 
conditions. 
 
ACKNOWLEDGEMENTS 
 
The authors would like to thank the U.S. Office of Naval 
Research for funding some parts of the Bay of Fundy 
research project during 2003-2004 through an agreement 

with the University of Southern Mississippi. This project 
yielded the data used for the work report in this paper. 
Some of the research was carried out under contract 
specifically for GNSS simulation system development for 
modeling environmental errors. The support of the Korea 
Astronomy and Space Science Institute is gratefully 
acknowledged. 
 
REFERENCES 
 
Bassiri, S. and G. A. Hajj (1993). “Higher-order 

ionospheric effects on the global positioning 
system observables and means of modeling them.” 
Manuscripta Geodaetica, Vol. 18, pp. 280-289. 

Beutler, G. (1998). “GPS satellite orbits.” In GPS for 
Geodesy, 2nd edition, edited by P. J. G. Teunissen 
and A. Kleusberg, Chapter 2, pp. 43-110, Spring-
Verlag, New York.  

Chen, G. and T. A. Herring (1997). “Effects of 
atmospheric azimuthal asymmetry on the analysis 
of space geodetic data.” Journal of Geophysical 
Research, Vol. 102, No. B9, pp. 20489-20502. 

Davis, J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, 
and G. Elgered (1985). “Geodesy by radio 
interferometry: Effects of atmospheric modelling 
errors on estimates of baseline length.” Radio 
Science, Vol. 20, No. 6, pp. 1593-1607. 

Fotopoulos, G. and M. E. Cannon (2001). “An overview 
of multiple-reference station methods for cm-level 
positioning.” GPS Solutions, Vol. 4, No. 3, January, 
pp. 1-10. 

Gregorius, T. and G. Blewitt (1998). “The effect of 
weather fronts on GPS measurements.” GPS World, 
Vol. 9, No. 5, May, pp. 52-60. 

Herring, T. A. (1992). “Modeling atmospheric delays in 
the analysis of space geodetic data.” Proceedings 
of Refraction of Transatmospheric Signals in 
Geodesy, Netherlands Geodetic Commission Series, 
Vol. 36, pp. 157–164. 

Hoque, M. M. and N. Jakowski (2007). “Higher order 
ionospheric effects in precise GNSS positioning.” 
Journal of Geodesy, Vol. 81, No. 4, 2007, pp. 259-
268. 

Kashani, I., D. Grejner-Brzezinska and P. Wielgosz 
(2004). “Towards instantaneous RTK GPS over 
100 km distances.” Proceedings of ION 60th 
Annual Meeting, Dayton, Ohio, 7-9 June, pp. 679-
685. 

Kim, D. and R. B. Langley (2005). “Nullification of 
differential ionospheric delay for long-baseline 
real-time kinematic applications.” Proceedings of 
ION 61st Annual Meeting, Cambridge, 
Massachusetts, 27-29 June, pp. 949-960. 

Kim, D. and R. B. Langley (2007a). “Ionosphere-
nullification technique for long-baseline real-time 
kinematic applications.” Navigation: Journal of the 



11/12 

Institute of Navigation, Vol. 54, No. 3, Fall, pp. 
227-240. 

Kim, D. and R. B. Langley (2007b). “Long-range single-
baseline RTK for complementing network-based 
RTK.” Proceedings of ION GNSS 2007, Fort 
Worth, Texas, 25-28 September, pp. 639-650. 

Landau, H., U. Vollath and X. Chen (2002). “Virtual 
reference station systems.” Journal of Global 
Positioning Systems, Vol. 1, No. 2,  pp. 137-143. 

Langely, R. B. (2000). “GPS, the ionosphere, and the 
solar maximum.” GPS World, Vol. 11, No. 7, July, 
pp. 44-49. 

Lawrence, D., R. B. Langley, D. Kim, F.-C. Chan and B. 
Pervan (2006). “Decorrelation of troposphere 
across short baselines.” Proceedings of IEEE/ION 
PLANS 2006, San Diego, California, 24-27 April, 
pp. 94-102. 

McCarthy, D. D. and G. Petit (2003). “International Earth 
Rotation and Reference Systems Service 
Conventions 2003, IERS Technical Note No. 32.” 
[Online] 7 September 2008. <http://www.iers.org/ 
documents/publications/tn/tn32/tn32.pdf>. 

Niell, A. E. (1996). “Global mapping functions for the 
atmospheric delay at radio wavelengths.” Journal 
of Geophysical Research, Vol. 101, No. B2, pp. 
3227–3246. 

Petrovski, I., S. Kawaguchi, H. Torimoto, B. Townsend, S. 
Hatsumoto and K. Fuji (2002). “An impact of high 
ionospheric activity on MultiRef RTK network 
performance in Japan.” Proceedings of ION GPS-
2002, Portland, Oregon, 24-27 September, pp. 
2247-2255. 

Rizos, C. (2002). “Network RTK research and 
implementation - A geodetic perspective.” Journal 
of Global Positioning Systems, Vol.1, No.2, pp. 
144-150. 

Rocken, C., T. Van Hove, J. Johnson, F. Solheim and R. 
Ware (1995). “GPS/STORM – GPS sensing of 
atmospheric water vapour for meteorology.” 
Journal of Atmospheric and Oceanic Technology, 
Vol. 12, 1995, pp. 468-478. 

Saastamoinen, J. (1972). “Atmospheric correction for the 
troposphere and stratosphere in radio ranging of 
satellites.” Geophysical Monograph, Vol. 15, pp. 
247–251. 

Skidmore, T. and F. Van Graas (2004). “An investigation 
of tropospheric errors on differential GNSS 
accuracy and integrity.” Proceedings of ION GNSS 
2004, Long Beach, California, 21-24 September, 
pp. 2752-2760. 

Wielgosz, P., I. Kashani and D. Grejner-Brzezinska 
(2005). “Analysis of long-range network RTK 
during a severe ionospheric storm.” Journal of 
Geodesy, Vol. 79, No. 9, December, pp. 524-531. 

Wubbena, G., A. Bagge and M. Schmitz (2001). “RTK 
Networks based on Geo++® GNSMART - 

Concepts, implementation, results.” Proceedings of 
ION GPS 2001, Salt Lake City, Utah, 11-14 
September, pp. 368-378. 

Ziebart, M., P. Cross and S. Adhya (2002). “Modeling 
photon pressure: The key to high-precision GPS 
satellite orbits.” GPS World, Vol. 13, No. 1, 
January, pp. 43-50. 

 
 
APPENDIX 
 
Tropospheric Delays  
 
In precise applications requiring millimetre accuracy, the 
tropospheric delay can be estimated by a simple 
parameterization. The line of sight delay D is expressed as 
a function of four parameters as follows [McCarthy and 
Petit, 2003]: 
 

( ) ( ) ( ) ( ) ( )cos sinh hz w wz g N ED m el D m el D m el G az G az= + + ⎡ + ⎤⎣ ⎦
                    (A1) 
 
where hzD  is the zenith hydrostatic delay; wzD  is the 
zenith non-hydrostatic or wet delay; NG  and EG  are the 
north and east delay gradient in distance units, 
respectively; hm , wm  and gm  are the hydrostatic, wet 
and gradient mapping functions, respectively; el is the 
non-refracted elevation angle at which the signal is 
received; and az is the azimuth angle at which the signal 
is received, measured east of north. 
 
Under typical atmospheric conditions, GPS data may not 
have the sensitivity to detect atmospheric gradients and 
azimuthal asymmetry as included in Eq. (A1). In such a 
case, the tropospheric delay can be estimated by 
restricting the parameterization to the zenith delay 
components, such that:  
 

( ) ( )h hz w wzD m el D m el D= + .                (A2) 
 
Hydrostatic Delay  For the most accurate a priori 
hydrostatic delay, the formula of Saastamoinen [1972] as 
given by Davis et al. [1985] is used in this paper as:  
 

( )
( )

00.0022768 0.0000005
1 0.00266 cos 2 0.00028hz

P
D

Hφ
±

=
− −

,               (A3) 

 
where 0P  is total atmospheric pressure in millibars at the 
antenna reference point; φ  is the geodetic latitude of the 
site; and H  is the height above the geoid (km). 
 
Mapping Functions   For the hydrostatic and wet 
mapping functions, Niell’s NMF (New Mapping 
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Functions) [Niell, 1996] are used in this paper. The NMF 
adopts the same form of Herring [1992] as:  

( )
( ) ( )

1
1

1( , , , )
sin

sin
sin

a
b

cf el a b c
ael bel

el c

+
+

+=
+

+
+

,           (A4) 

 
In the NMF, unlike the Herring model, the hydrostatic 
mapping function is dependent on latitude, season (i.e., 
day of the year) and the height above the geoid of the 
point of observation while the wet mapping function is 
dependent on latitude only. The NMF are given by 
 

( ) ( )
( )

1( , , , ) ( , , , )
sin

( , , , ),

h h ht

w w

m el f el a b c f el a b c H
el

m el f el a b c

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦
=

  (A5) 

 
where again, el is the elevation angle at which the signal 
is received; H  is the height above the geoid (km); and 
subscripts h, w and ht indicate that the function f uses the 
coefficients a, b and c corresponding to the hydrostatic 
and wet mapping functions and height correction, 
respectively. 
 
For the gradient mapping function, Chen and Herring 
[1997] can be used as:  
 

( ) ( ) ( )g
1m

sin tan 0.0032
el

el el
=

+
.                (A6) 

 
Estimation Model 
 
Assuming that accurate real-time meteorological data are 
available at a reference station and a rover, we can use Eq. 
(A3) to remove the hydrostatic delay in Eq. (A2), without 
the assumption of atmospheric azimuthal asymmetry and 
use of gradient estimation. To avoid a mathematical 
correlation between the partial derivatives of the 
tropospheric delay at two stations, the levering technique 
[Rocken et al., 1995] can be used, which fixes the 
tropospheric delay at the reference station and estimates 
the relative delay at the rover. Then, from Eq. (A2), the 
DD tropospheric delay T is given by 
 

( ) ( )uv uv uv
AB B A h w wzT SD D SD D T m τ′= − = + ,               (A7) 

 
where ( )SD ⋅  is the single-difference (between satellites u 
and v) operator; subscripts A and B indicate a reference 
station and a rover, respectively; and 
 

( ) ( )uv uv
h B h hz A h hzT SD m D SD m D= −                 (A8) 

( ),
uv

w w B B wm m SD m′ ′= =                  (A9) 

( ) 1

, , ,
T T

wz wz B w w w w A wz Am m m mτ τ τ
−

′ ′ ′ ′= − .             (A10) 
 


