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ABSTRACT  
 
In this paper, we examine the accuracies of the WAAS 
and CDGPS orbits and clocks as well as investigate the 
possibility to use those WADGPS corrections in the 
precise point positioning domain.  
 
The methodology, which fully takes into account the 
different satellite antenna phase-center offsets used by the 
different agencies, assesses the CDGPS and WAAS 
satellite orbit and clock correction accuracies with respect 
to the International GNSS Service (IGS) precise orbit and 
clock products. Experimental results with a continuous 
five days worth of data show that user range errors 
observed with the WAAS satellite orbit and clock 
corrections is at about the 50 cm level and using the 
CDGPS satellite orbit and clock corrections, the user 
range errors are about the 20 cm level. The analyzed 

results also show that the WAAS satellite orbit and clock 
corrections are highly correlated and it is not valid to 
separately use them for a correction or validation.  
 
Precise point positioning (PPP) results obtained with the 
IGS, CDGPS and the WAAS satellite orbits and clocks 
are presented. PPP with IGS products produces the most 
accurate user results. The tests with the WADGPS 
corrections show that WADGPS orbit and clock 
corrections can be used for a PPP process with the carrier-
phase observables. However, it will be limited by slower 
parameter convergence compared to using IGS products 
and there might be a challenge for kinematic PPP. 
     
INTRODUCTION  
 
A number of satellite-based augmentation systems 
(SBAS) (e.g., WAAS, EGNOS, MSAS and the Canada-
wide Differential GPS (CDGPS) Service) are in operation 
and more are planned for the future. These free services 
provide real-time DGPS corrections across countries and 
continents by bringing quality geo-referencing 
capabilities to L1 single-frequency GPS users. However, 
these WADGPS satellite orbit and clock corrections can 
also be used to improve the GPS positioning accuracy for 
dual-frequency users by carefully take into account the 
satellite clock referencing issue as well as properly 
handling the increased noise level of the ionosphere-free 
measurement combination [Rho and Langley, 2005]. 
 
Although the previous study has provided essential 
insights, some questions remain to be answered: what is 
the actual accuracy of the WADGPS orbit and clock 
corrections? Is it possible to use the WADGPS satellite 
orbit and clock corrections for precise point positioning 
using carrier phase? 
 
To help answer for these question, we first derived the 
methodology which fully takes into account the different 
satellite antenna phase-center offsets used by the different 
agencies to rigorously assess the CDGPS and WAAS 
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satellite orbit and clock correction accuracies. The 
assessments of the CDGPS and WAAS corrections were 
separately conducted by comparing the corrected 
broadcast orbits and clocks to the IGS precise orbit and 
clock products. In the following sections, a sensitivity of 
the different antenna offsets to the WADGPS corrected 
orbits and clocks was precisely analyzed and the overall 
characteristics as well as the user range errors (UREs) of 
the CDGPS and WAAS orbit and clock corrections are 
presented. Since our ultimate goal in this research is to 
see the possibility of using the WADGPS satellite orbit 
and clock corrections in the precise point positioning 
(PPP) domain, the estimated parameters using the 
extended UNB RTCA/MRTCA correction software have 
been precisely analyzed. Analysis of the effects by using 
different accuracy of the satellite and clock products in 
the positioning domain is also presented. Finally, 
conclusions and plans for future research are specified. 

 
ORBIT AND CLOCK PRODUCTS FOR GPS POINT 
POSITIONING  
 
For standard GPS point positioning with a few meters to 
ten meters level of accuracy [IS-GPS-200, 2006], the 
broadcast ephemeris data is used to compute the satellite 
position. The accuracy, in one sigma, of the broadcast 
ephemeris is currently about 1.6 m and approximately 2.1 
m accuracy could be accessible for the broadcast clock 
[IGS, 2007].  
 
However, to improve the positioning accuracy, a better 
accuracy of ephemeris and clock data should be used. One 
possibility to improve the broadcast orbit and clock data 
is to apply SBAS corrections. Better than two meter level 
of accuracy could be achievable for single-frequency 
users by using SBAS corrections. Currently in North 
America, two different SBAS systems, WAAS and 
CDGPS, are in operation and provide real-time satellite 
orbit and clock corrections (as well as ionospheric 
corrections for single-frequency users).  
 
In the case of CDGPS, orbit corrections are computed by 
using data from the IGS “hourly” global network as well 
as a regional ground network [CDGPS ICD, 2003]. The 
clock corrections with respect to their reference clock are 
computed by using data from the ground network. The 
CDGPS ground network consists of about 14 stations in 
Canada, the so-called Canadian Active Control System 
(CACS), and 15 additional reference stations located 
outside of Canada since May, 2007. The MRTCA, 
modified Radio Technical Commission for Aeronautics 
(RTCA), format has been adopted to provide better 
precision of real-time orbit and clock corrections than the 
standard RTCA format in NAD83(CSRS) coordinate 
system. The resolution of satellite orbit and clock 
corrections is 0.0039 m [CDGPS ICD, 2003]. 
 

In the case of WAAS, the corrections are based on data 
from their ground network. Currently 34 reference 
stations including nine new stations are in operations and 
used to generate the real-time WAAS corrections. On 
September 29, 2007, WAAS has included additional nine 
new international reference stations (WRS) into the 
WAAS network [FAA, 2007]. WAAS provides the real-
time satellite orbit and clock corrections with the 
resolution of 0.125 m using RTCA format [WAAS 
MOPS, 1999]. 
 
However, to achieve the highest possible accuracy in the 
positioning domain with the data from a single station, 
precise satellite orbit and clock products (such as those 
from IGS) should be used. In general, a precise point 
positioning process can attain positioning solutions with 
centimeter to decimeter accuracy using undifferenced 
pseudorange and carrier phase [Kouba and Héroux, 2001; 
Gao, 2004]. The precise orbit and clock data from IGS is 
generated based on a global network of permanent 
tracking stations (more than 200 stations) and their final 
product accuracy is less than about 5 cm for orbits and 3 
cm for clocks. 
  
To illustrate the differences in those satellite orbit and 
clock products which were considered in this research, we 
summarize them in Table 1. In Table 1, the accuracies of 
the broadcast orbit and clock data and the IGS products 
refer to IGS [2007] and the WAAS and CDGPS orbit and 
clock accuracies are based on the assessment in the 
following sections of this paper. 
  
Table 1. Summary of the different orbit and clock 
products.  

  corrections Solution Datum Latency Accuracy 

BRD Orbit 1.60 m 

  Clock 
Global 
 

WGS84 
 

Real-
time 

2.10 m 

IGS Orbit < 0.05 m 

Final Clock 
Global IGS05 ~13 days 

0.03 m 

WAAS Orbit ~1.3 m 

  Clock 

Regional 
Regional WGS84 

 

Real-
time 

~1.3 m 

CDGPS Orbit ~ 0.05 m 

  Clock 

Global+ 
Regional 
Regional 

NAD83 
(CSRS) 

 
Real-
time ~ 0.03 m 

 
ACCURACY OF THE WADGPS ORBIT AND 
CLOCK CORRETIONS 
 
The GPS control segment computes the orbit with respect 
to the center of mass point of each satellite but transforms 
the results to the effective antenna phase centers [Ray and 
Senior, 2005]. Since the observables of GPS users refer to 
the antenna’s phase center, those offsets are not officially 
provided [IS-GPS-200, 2006]. However, as the 
assumptions of some sets of antenna phase center offsets 
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are different for different analysis centers and different 
systems, it is necessary to account for any differences 
when we are comparing satellite orbit and clock values 
from different sources.  
 
To evaluate the accuracy of the CDGPS and the WAAS 
orbit and clock corrections, the accuracy of the broadcast 
orbits (BO) and clocks (BC) as well as the orbits and 
clocks after the CDGPS (CO and CC) and the WAAS 
(WO and WC) corrections [CDGPS ICD, 2003, WAAS 
MOPS, 1999] have been applied are determined. Since 
the CDGPS orbit corrections are generated in the NAD83 
(CSRS) reference frame, the transformed IGS precise 
ephemerides from ITRF05 to NAD83 coordinate system 
were used as truth for the CDGPS analyses [Craymer, 
2006]. To evaluate the broadcast and WAAS orbit and 
clock accuracy, the final precise ephemerides from IGS 
were used as a truth. The assessment of the CDGPS and 
WAAS orbit and clock corrections were conducted by 
comparing the corrected BOs and BCs to the IGS precise 
orbit (IGSO) and clock (IGSC) products. However, as an 
important issue in these comparisons is the different 
satellite antenna phase-center offsets used by the different 
agencies, we first derived the methodology which can 
precisely take into account those effects. 
  
Methodology 
 
As the IGS precise products are referenced to the center 
of mass, we use the center of mass as a fundamental 
reference point and transform the broadcast and the 
WADGPS corrected orbits and clocks to the reference 
point.  
 
All of the following equations are expressed in meters. 
 

)()()( userAPCephBOcompBO +=                                        (1) 
 

*)()()( userAPCephBCcompBC +=                                       (2) 
 

)()()( userAPCXYZCDGPSephBOcompCO +−+=                 (3) 
 

*)()()( 11 userAPCbCLKCDGPSephBCcompCC CP ++−+=      (4) 
 

)()()( userAPCXYZWAASephBOcompWO +−+=                  (5) 
 

*)()()( 11 userAPCbCLKWAASephBCcompWC CP ++−−=   (6) 
 
where  
comp :  computed values. 
eph :  broadcast ephemeris.  
user : user-defined antenna phase-center offsets, i.e., IGS 
or National Geospatial-Intelligence Agency (NGA) 
antenna phase-center offsets. 

APC : antenna phase-center offsets transformed to the 
ECEF frame. 

*APC : antenna-Z offset which is directed from the 
satellite center of mass towards to the Earth. 

XYZCDGPS−  and XYZWAAS− : CDGPS and WAAS 
long-term satellite orbit corrections in ECEF frame. 

CLKCDGPS−  and CLKWAAS− : combined CDGPS and 
WAAS fast and long-term clock corrections at the 
antenna phase-center. 

11CPb : satellite P1-C1 bias (in this research, P1-C1 bias 
used from the Center for Orbit Determination in Europe 
(CODE) [2007] is used). 
 
Note that first, the sign between CDGPS [CDGPS ICD, 
2003] and WAAS [WAAS MOPS, 1999] clock 
corrections are different and second, the P1-C1 bias 
correction term is used in the equation (4) and (5).  
 
As long as the IGS clock data are referenced to P1P2 
ionosphere-free measurements and WADGPS clock 
corrections are referenced to C1, the P1-C1 bias should  
properly takes into account in the above equation (4) and 
(6) [Rho and Langley, 2005; Collins et al., 2005].  
 
Now, the IGS precise satellite orbit is computed as: 
 

)3()( SPIGSOcompIGSO =                                                   (7) 
 
To compare the IGS satellite clock values with other 
results using different antenna phase-center offsets later 
see equation (10), the correction is also applied to the IGS 
clock data: 
 

*)()3()( IGSAPCSPIGSCcompIGSC +=                                (8) 
 
where  

3SP : IGS final precise orbit and clock data in SP3 format 
*)(IGSAPC : values from the IGS ANTEX file, 

igs05_1402.atx 
 
Next, we compute the broadcast and WADGPS-corrected 
orbit and clock with respect to the IGS products: 
 

)()(_ compIGSOcompXOorbDX −=                                  (9) 
 

)()(_ compIGSCcompXCclkDX −=                                  (10) 
 
where 

orbDX _  : final orbit errors in ECEF frame. 
clkDX _  : final clock errors. 

X  : specific orbit and clock products, i.e, broadcast or  
WADGPS corrected orbits and clocks. 
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Finally, to generate the range errors for broadcast and 
WADGPS corrected satellite orbit and clock products, the 
user range error (URE) is computed for each satellite: 
 

)(_)()( satclkDXsatPRCcompURE −=                             (12) 
 
where 

)(*_)(
LOS
LOSorbDXsatPRC =                                       (13)           

where 
PRC is the pseudorange correction errors and CLK  
represents the clock error for each satellite for the 
different products. 
 

LOS
LOS  represent the line of sight vector between a satellite 

and a user position. In this research, the user position was 
assumed to be located on the earth and right below the 
satellite, i.e., the same coordinate with the specific 
satellite in latitude and longitude but the height is zero 
(assumed user located right on the datum). 
  
To compute finalURE , the average of the all satellites  
UREs  was subtracted, i.e., )(UREmeanUREURE −=  
because that is equivalent to a clock error which will be 
absorbed by the receiver clock in a least squares solution.  
 
Effects of antenna phase-center offsets 
 
To characterize the effects of the different antenna phase-
center offsets in the comparison of two different sets of 
satellite and orbit corrections, the broadcast and 
WADGPS-corrected orbit and clock errors were 
computed with respect to the IGS products. In this 
comparison, IGS precise orbit and clock data was 
assumed as truth. As the WADGPS corrections are 
estimated with respect to the GPS broadcast ephemeris 
and clock, another purpose of this comparison is to see if 
they are following the same conventions as the GPS 
control segment.  
 
Two different sets of offsets, IGS and NGA were 
considered. The IGS has adopted uniform values of the 
offsets for each block of satellites (see [IGS, 2007]). 
However, the NGA also provides their own offset 
estimates (see [NGA, 2007]). The offsets used by the 
NGA are similar to those of the IGS for Block II and 
Block IIA satellites, however, the differ significantly and 
are distinct for each Block IIR satellite, most being 
around 1.5 m – 1.6 m or near 0.0 m.  
 
The following Figure 1 shows the computed broadcast 
orbit and clock errors separately using the IGS and NGA 
offsets. In Figure 1, the left panel shows the broadcast 
orbit and clock errors computed by using the NGA offsets 

and the right panel shows those errors computed by using 
the IGS offsets 
  

 
Figure 1. Broadcast orbit and clock errors on July 23, 
2007. The left panel shows the broadcast orbit and clock 
errors computed by using the NGA offsets and the right 
panel shows those errors computed by using the IGS 
offsets. 
 
In the right panel, when the IGS offsets are applied to the 
broadcast orbit and clock, the effect of the unmatched 
offsets was observed as a certain level of biases from the 
different block of satellites in the radial component errors. 
Those biases were observed for those Block IIR satellites 
which had a difference of 1.5 m - 1.6 m with respect to 
the NGA offsets. However, those biases did not appear- 
when the NGA antenna offsets were applied (see left 
panel). Another effect of the unmatched offsets was 
observed for the clock errors. The broadcast clock errors 
with NGA antenna offsets (see left panel) are more 
precise and accurate than the clock errors computed using 
IGS offsets (see right panel).  
 
These results show that the broadcast orbit and clock data 
have a better match with the NGA antenna offset 
conventions. It also shows the unmatched antenna offset 
effects can be observed in the radial orbit errors and clock 
error components (range error components).  
 
To see if the WADGPS-corrected orbits and clocks are 
following the same conventions as the broadcast data, i.e., 
NGA conventions, each component of the WADGPS- 
corrected orbit errors and clock errors were computed 
with respect to the IGS products. 
 
The following Figure 2 shows the CDGPS- and WAAS- 
corrected orbit and clock errors which were computed by 
using the NGA conventions (left panel) and by using the 
IGS conventions (right panel). In both panels, the red 
colors show the WAAS-corrected results and the green 
colors represent the CDGPS-corrected results. 
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Figure 2. CDGPS- (green) and WAAS- (red) corrected 
orbit and clock errors on July 23, 2007.  
 
In Figure 2, the same unmatched antenna offset effects 
were observed in the CDGPS-corrected orbit and clock 
errors which were computed by using NGA offsets (see 
left panel). However, those bias effects appeared when the 
NGA conventions were used rather than when the IGS 
conventions were used like for the broadcast results. It 
shows that the CDGPS orbit and clock corrections are a 
better match with the IGS conventions.  It could be 
explained that the CDGPS computes orbit corrections 
using data from the IGS “hourly” global network as well 
as a regional ground network as we stated above. In using 
the IGS hourly data, they use a same conventions as IGS.  
 
In the case of the WAAS-corrected orbit and clock errors, 
the above identified antenna offset effects were not 
clearly observed. As the WAAS corrected orbit and clock 
errors are widely varying in time compared with the other 
orbit and clock products, the effects might be hiden. 
However, the WAAS orbit and clock have a better 
accuracy when the errors are computed using the NGA 
conventions (see Table 2). It shows that WAAS is 
following the same conventions as the GPS control 
segment.  
  
User Range Error (URE) 
 
To see the actual range errors of the WADGPS-corrected 
orbits and clocks, we computed the UREs using equation 
(12).   
 
The following Figure 3 shows that the time series of the 
UREs for the broadcast orbits and clocks (top panel), 
WAAS-corrected satellite orbits and clocks (middle 
panel) and CDGPS-corrected satellite orbit and clock 
products (bottom panel). 
 

 
Figure 3. User range errors on July 23, 2007 
 
In the top panel, the broadcast UREs show wide ranges of 
variations and long-term drifts in time. Those variations 
were caused by the less precise broadcast clock errors 
rather than relatively precise orbit errors (see Figure 1, in 
which the broadcast clock errors have much bigger errors 
than orbit errors and overall patterns in time are similar 
with the time series of UREs).  
 
In the middle panel, we observed the UREs of WAAS-
corrected satellite orbits and clocks are significantly better 
than the individual orbit and clock errors (also see the 
following Table 2). The improvement in UREs indicates 
that there exist strong correlations between orbit and 
clock corrections (see Figure 2, where the magnitudes and 
the overall variations of the WAAS-corrected orbit errors 
are similar with those of the WAAS-corrected clock 
errors). As the UREs account for both the orbit and the 
clock errors, those highly correlated error terms are 
cancelled out and the true WAAS error is revealed. The 
following Table 2 also shows that the r.m.s. of the WAAS 
orbit and clock errors have similar values and the UREs 
for WAAS-corrected results are at about the 46 cm level. 
Those results clearly indicate that the WAAS orbit and 
clock corrections are highly correlated and it is not valid 
to separately use them for a correction or for a validation. 
 
In the bottom panel, CDGPS orbit and clock corrections 
showed good performance in correcting broadcast 
ephemeris and clock.  The r.m.s. of UREs for this day was 
at about the 16 cm level (see Table 2). 
 
To clearly identify the effects of the different antenna 
offset in terms of the magnitude of the errors as well as to 
see the overall accuracy of the different satellite and orbit 
products, we computed the r.m.s. of the errors for each 
error component for each satellite orbit and clock product 
on the single day, July 23, 2007. 
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Table 2. Summary of the r.m.s of the orbit and clock 
errors. The colored lines highlight the statistics with the 
better matched antenna offsets. 

r.m.s (m) offset Radial 
along-
track 

cross-
track clock URE 

BRD NGA 0.222 1.196 0.491 0.880 0.857 

  IGS 0.869 1.196 0.490 1.186 0.857 

WAAS NGA 1.200 2.349 0.747 1.181 0.462 

  IGS 1.259 2.349 0.747 1.243 0.462 

CDGPS NGA 0.845 0.188 0.151 0.711 0.163 

  IGS 0.035 0.188 0.150 0.165 0.163 
 
The statistics in Table 2 show the unmatched antenna 
offsets can be observed only for the most effective range 
error components, the radial orbit errors and clock errors. 
Table 2 also shows that the better matched antenna offsets 
have better accuracies for the specific satellite orbit and 
clock products. However, when the URE were computed, 
those inconsistencies cancel, i.e., the URE values for 
matched or unmatched antenna offsets are the same and 
the true broadcast and WADGPS errors are revealed. That 
shows the different antenna phase-center offsets only 
become an issue when satellite orbit and clock products 
are compared with different sets of corrections. 
 
Finally, to see the consistency of the WADGPS orbit and 
clock errors, a continuous five days of data was processed 
from July 23, 2007 to July 27, 2007. Since the radial and 
clock errors are the most significant components in the 
range errors, we generate the r.m.s. of the errors in the 
radial and clock components and UREs. Figure 4 shows 
the computed results. 
 

 
Figure 4.  r.m.s. errors for the radial orbit component, 
clock and URE from July 23, 2007 to July 27, 2007. 
 
Figure 4 shows first that the individual WAAS-corrected 
orbit and clock accuracies are not better than broadcast 
results for the continuous 5 days. However, we can see 
the true WAAS errors were revealed when we computed 
the UREs. The day to day variations of the r.m.s. of 
WAAS UREs were about 0.18 m (from 0.40 m to 0.58 m) 
and they were at about the 0.11 m level (from 0.75 m to 

0.86 m) for the broadcast URE. Figure 4 also shows that 
the daily r.m.s. of the radial component errors and the 
clock errors for the WAAS-corrected results are highly 
correlated in terms of magnitude of r.m.s. errors for the 
continuous five days.  
 
In the case of CDGPS-corrected orbit and clock errors, 
the results show good performance not only in the 
individual errors but also in the r.m.s of UREs. However, 
there was a certain level of degradation observed in the 
CDGPS-corrected orbit and clock. The CDGPS radial and 
clock errors from July 25 to July 27 were almost three 
times bigger than July 23 and July 24 results. Some 
abnormal CDGPS corrections were observed at UNB for 
certain periods for those three days. However, the day-to-
day variations for the r.m.s. of UREs were about 0.11 m 
(from 0.16 m to 0.23 m) in the continuous five days. 
 
PRECISE POINT POSITIONING WITH WADGPS 
CORRECTIONS 
 
Since our ultimate goal in this research is to see the 
possibility to use the WADGPS satellite orbit and clock 
corrections in the PPP domain, we used the extended 
UNB RTCA/MRTCA correction software to generate the 
precise point positioning results.  
 
UNB RTCA/MRTCA Correction Software 
 
UNB RTCA/MRTCA corrections software was originally 
developed to see the CDGPS and WAAS performance 
anywhere in North America [Rho et al., 2003]. Any 
RINEX observation data from any station can be used as 
input and RTCA [WAAS MOPS, 1999] or MRTCA 
[CDGPS ICD, 2003] archived correction message are 
used to correct the raw pseudoranges. The correction 
scheme, explained in the CDGPS ICD [2003] and the 
WAAS MOPS [1999] were followed for the most part. 
The only difference is that the UNB3 tropospheric model 
with Niell mapping functions [Niell, 1996] were used 
rather than Black and Eisner mapping function, which is 
currently used in WAAS [WAAS MOPS, 1999]. 
 
The first extension was made to make it use the 
WADGPS orbit and clock corrections for GPS dual-
frequency data processing. The newly developed point 
positioning model which fully takes into account the 
satellite clock referencing issue and a sequential forward 
smoothing filter which utilizes the fully combined 
uncertainly for both systematic and random errors in the 
smoothing process were implemented [Rho and Langley, 
2005].  
 
Recently, a dual-frequency precise point positioning 
algorithm has been implemented. The ionosphere-free 
combinations in both undifferenced carrier-phase and 
pseudorange measurements are used as observables. The 
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set of parameters, receiver coordinates in ECEF frame,  
neutral atmospheric delay with Niell mapping function, 
carrier-phase ambiguities and receiver clock are estimated 
in a sequential least-squares sense [Kouba and Héroux, 
2001]. Both precise orbit and clock data (such as those of 
the IGS or Natural Resources Canada (NRCan)) as well 
as WADGPS (CDGPS and WAAS) orbit and clock 
corrections are optionally used. All solutions incorporate 
corrections for solid earth tides, ocean loading, periodic 
relativistic effects, phase wind-up, satellite antenna phase- 
center offsets and differential code bias.  
 
Data Testing and Analysis 
 
In the following, data processing and analysis were 
conducted to assess the performance of different satellite 
orbit and clock corrections. In this test, one day of GPS 
data acquired on July 23, 2007 at IGS station, Algonquin 
Park (ALGO) was processed. The station ALGO is 
located about 160 km west of Ottawa, Ontario, Canada (N 
45.95580 in latitude and W 78.07137 in longitude) and 
equipped with an AOA Benchmark ACT receiver, a 
Dorne Margolin AOAD/M_T choke-ring antenna and a 
meteorological sensor as well as hydrogen-maser atomic 
clock. The station ALGO was selected because the 
coordinates of the stations are precisely determined with 
respect to ITRF2005 [JPL, 2007] and NAD83(CSRS)  
[NRCan, 2007] and the well equipped instruments could 
help to mitigate the errors in the measurements. For 
example, the choke-ring antenna can mitigate the 
multipath effects to a certain extent and the external  
hydrogen-maser atomic clock helps stabilize the receiver 
clock and as a result, helps to precisely estimate it in the 
estimator. 
  
PPP with WADGPS corrections 
 
To assess the performance of different satellite orbit and 
clock corrections, the data was processed with the 
WADGPS orbit and clock corrections as well as IGS 
precise orbits and clocks. In the PPP process, we used a 
unit weight for the carrier phase, 0.002 m, and 
pseudorange 1 m. As long as the definitions and the 
magnitudes of uncertainties which are provided by 
CDGPS [CDGPS ICD, 2003] and WAAS [WAAS 
MOPS, 1999] are different, the purpose of this test is to 
see the results using equal weights.  
 
The following Figure 5 shows precise point positioning 
results with the different satellite and clock corrections at 
the station ALGO on July 23, 2007. 

 
Figure 5. Precise point positioning results (static case) 
with IGS products (green), CDGPS corrections (blue) and 
WAAS corrections (red) at station ALGO on July 23, 
2007. 
 
In Figure 5, the coordinate estimates with the IGS 
products converged to the centimeter level within about 
30 minutes. After the convergence, all positioning results 
with the IGS products are accurate at sub-centimeter 
level. As shown in Table 3, centimeter accuracy 
positioning results have been achieved by using IGS 
precise orbit and clock products. However, the estimated 
sigma values seem too optimistic compared with the 
actual coordinate errors. 
 
Table 3. Dual-frequency precise point positioning results 
with the different  satellite orbit and clock corrections.   

unit: m IGS CDGPS WAAS 

Bias North -0.020 -0.029 0.024 

Bias East -0.018 0.008 0.003 

Bias Up 0.029 -0.01 -0.193 

Sigma N 0.001 0.002 0.004 

Sigma E 0.001 0.002 0.006 

Sigma U 0.001 0.002 0.006 
 
As the accuracy and precision of the WADGPS satellite 
orbits and clocks products are not better than the IGS 
products (see Table 2 and Figure 3), the convergence for 
coordinate estimates with the WADGPS products took a 
much longer time compared with the results using the IGS 
products. The overall performance of the CDGPS (blue) 
and WAAS (red) corrected results in the horizontal 
components are comparable. However, the up component 
estimates using the WAAS satellite orbit and clock 
corrections were biased at about the 19 cm level. Some 
part of bias might be explained by the different quality of 
the corrections. As a dominant error source in the range 
components is the clock correction accuracy, some of that 
bias in the up component might be explained by the 
different quality of the satellite clock accuracies (see 
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Figure 3 and Figure 4). However, we need to further 
investigate this. 
 
Estimated troposphere zenith path delays 
 
To see the different accuracy in the estimated troposphere 
zenith path delays (zpd) with the different sources of orbit 
and clock corrections, the relative accuracy of the 
estimated troposphere delays were analyzed. We used the 
tropospheric delays obtained from the NRCan GSD PPP 
software as a reference using the same data on the same 
day [NRCan PPP, 2007]. The accuracy of the NRCan 
tropospheric estimates are usually in the maximum 3 cm 
level compared to the IGS combined zenith path delay  
[Kouba and Héroux, 2001].  
 
Figure 6 shows the estimated tropospheric zpd with the 
different orbit and clock corrections and also shows the 
difference in the estimated zpd with respect to the NRCan 
zpd. 
 

 
Figure 6. Estimated tropospheric delays with the different 
orbit and clock products at station ALGO on July 23, 
2007. The top panel shows the results with the IGS 
products, the middle panel shows the results with the 
CDGPS corrections and the bottom panel shows the 
results with the WAAS corrections. The green colors  
show the troposphere delays from the NRCan PPP 
software. 
 
In Figure 6, there is good agreement observed in the 
estimated troposphere zpd between UNB PPP results and 
NRCan results. We estimated the troposphere zpd every 
10 minutes using a forward filter. However, as the NRCan 
PPP is continuously estimating the tropospheric zpd by a 
using random walk process and applies a backward filter 
to finalize their parameters [Kouba and Héroux, 2001], 
the estimated tropospheric delays are smoother than the 
UNB PPP results. The statistics shows that the mean 
difference is 0.002 m and the r.m.s was observed to be 
about 0.01 m (see Table 2). In the case of CDGPS results, 
the overall behavior of the estimated tropospheric zpd 
appear unbiased however, the long-term variations were 

observed in time compared with the IGS and WAAS 
results. This might be explained by the UREs which were 
corrected by CDGPS and which showed a long term 
variations (see Figure 3).  The statistics in Table 4 also 
show that the most of the differences in the r.m.s were 
affected by the long-term variations. Finally for the 
WAAS results, the overall behavior of the estimated 
tropospheric zpd fluctuate more and many spikes are 
observed compared with other results. The jumps or 
spikes could be caused by the scattered corrections (or 
less precise corrections) in the URE (see Figure 3). The 
statistics in Table 2 also show that a bigger bias than 
others were observed until 1 hour after the first epoch. 
The higher variability in the corrections requires more 
time for converge to the parameter. However, the 
statistics did change at the few mm level after an hour 
from the first epoch. 
  
Table 4. Statics in the difference in the estimated 
troposphere zpd at the station ALGO on July 23, 2007 

Unit: 
meters   

PPP-
NRCan 

WAAS-
NRCan 

CDGPS-
NRCan 

+0 hrs mean 0.000 0.039 0.000 

 std. dev 0.027 0.318 0.035 

  r.m.s 0.027 0.320 0.035 

+1 hrs mean -0.004 0.016 0.000 

 std. dev 0.011 0.024 0.030 

 r.m.s 0.011 0.029 0.030 

+6 hr mean -0.005 0.012 0.002 

 std. dev 0.012 0.024 0.029 

  r.m.s 0.013 0.027 0.029 
 
 
Residual Analysis 
 
To more clearly see the effects of the different satellite 
orbit and clock products in the positioning domain, we 
further analyzed the carrier-phase residuals. Since the 
advantage of the PPP is to use the carrier phase by 
estimating the float ambiguity for each satellite, the effect 
of the different satellite orbit and clock products easily 
can be seen in the carrier-phase residuals.   
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Figure 7. Residual errors for the PPP results at station 
ALGO on July 23, 2007. The scale of the WAAS 
residuals were fixed to ± 0.5 m to see the detailed view. 
 
Figure 7 shows the carrier-phase residual errors at station 
ALGO on July 23, 2007.  As we expected, the smallest 
residual errors were observed with the positioning results 
with IGS products. The residual errors with the IGS 
products show that there are no significant patterns for 
any satellite arc. The overall variation of the residual 
errors are within the ± 0.10 m level and a maximum of 
0.20 m and a minimum of -0.19 m were observed over the 
entire day. An r.m.s of the residual errors of 0.034 m was 
observed. However, the residual errors with the CDGPS 
orbit and clock corrections are not consistent in time but 
show long-term variations. This might show that the 
accuracy of the CDGPS orbit and clock corrections is not 
constant in time and we might can see the long-term 
residual error effects in the positioning solutions (see 
Figure 5, there are about 4 hours variations appeared and 
clearly can be seen in the height component. However 
after the ambiguities for the satellites were stable (fixed), 
those variations in the measurement domain no longer 
significantly impact the positioning solutions). However, 
the magnitude of the residual errors using the CDGPS 
corrections are (quiet) comparable with the residual errors 
using the IGS products. The overall residuals are varying 
within ± 0.20 m and the r.m.s. of the residuals for the 
entire day was 0.053 m. A maximum of 0.240 m and a 
minimum of -0.244 m were observed. Finally, in the case 
of the residuals with the WAAS corrections, the 
characteristics of the residual errors could be identified as 
a larger scatter of residuals with similar long-term 
variations as with the CDGPS residuals. There are 
systematic long-term patterns in the satellite arc for 
specific time periods. And the overall pattern of the 
residuals is similar to the CDGPS results but more largely 
scattered. Since the PPP process considers all sources of 
errors, the large scatter of residuals might indicate that the 
resolution of the WADGPS corrections is an important 
factor and could degrade the accuracy as well as the 
precision of the PPP solutions [Rho and Langley, 2005]. 
The overall r.m.s. of the residuals (since the mean of 

residuals is zero, we might call it, std.dev) was 0.147 m 
and a maximum of 1.982 m and a minimum of -2.192 m 
was observed. 
 
Convergence of the sigma for the station coordinates 
 
Another important issue for PPP is the converge time. The 
main advantage of using WADGPS corrections for the 
PPP process might be use of the corrections in a real-time 
fashion. In this context, the converge time issue is another 
important factor for WADGPS PPP. The convergence 
time could be defined by that the time which is needed to 
precisely separate a specific parameter from the 
measurements and from all correlated parameters. So we 
might call it the separability or decorrelation time for the 
specific parameter. Since all the parameters are correlated 
in the filter (design matrix), a certain amount of time is 
needed to separate a parameter from the others.  
 
Figure 8 shows the converge time of the sigma for the 
stations coordinate in the north, east and up components. 
Since the final goal of the PPP is to precisely estimate the 
position, we further analyzed the convergence of sigma in 
the positioning domain. 
 

 
Figure 8. Convergence of the sigma with the different 
satellite orbit and clock corrections. The red color shows 
the sigma for the north component and the green color 
represents the east component. Finally the blue color 
shows the up component of the sigma in time. 
 
Figure 8 shows that the convergence time of those sigma 
in the PPP results with the IGS products and the CDGPS 
corrections is comparable. The 0.02 m level of sigma can 
be reached in less than an hour and all the sigma values in 
north, east and up components were observed to be at 
about the 0.01 m level. However, in the case of WAAS, 
the level of 0.02 cm was reached about six hours after the 
first epoch was estimated. These results might show the 
PPP solutions with the WAAS corrections needs a longer 
time to have a same level of precision with the PPP 
solutions compared with the CDGPS corrections. Even 
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though the magnitude of the sigma value is too small to 
distinguish the difference in the positioning domain, the 
overall behavior of the WAAS sigma is keep to 
decreasing even at the end of the day. This result might 
show that the PPP with the WAAS corrections will be 
limited by slower ambiguity convergence and there might 
be a challenge for kinematic PPP with WAAS 
corrections. 
 
CONCLUSIONS 
 
The methodology which fully takes into account the 
different satellite antenna phase-center offsets used by the 
different agencies has been carefully considered to 
rigorously assess the CDGPS and WAAS satellite orbit 
and clock correction accuracies with respect to the IGS 
precise orbit and clock products. With the adopted 
method: 
 
By analyzing the clock and radial orbit errors: 
 
• We found the CDGPS orbit and clock corrections 

have a better match with the IGS conventions of the 
antenna phase-center offsets and the broadcast 
ephemeris and clock have a better agreement with 
NGA conventions. Finally, we found WAAS appears 
to the same conventions as the GPS control segment. 

 
By analyzing the user range errors with a continuous five 
days worth of data: 
 
• CDGPS orbit and clock corrections showed good 

performance in correcting both broadcast ephemeris 
and clock. 

• WAAS orbit and clock corrections are highly 
correlated and it is not valid to separately use them 
for a correction or for a validation. 

 
By precisely analyzing the PPP results using different 
satellite orbit and clock corrections for one single station 
(a limiting factor): 
 
• WADGPS orbit and clock corrections can be used for 

a PPP process with the carrier-phase observable. 
• However, it will be limited by slower parameter 

convergence compared to using IGS products. 
• PPP with the WAAS corrections might be more 

limited by slower parameter converge than using 
CDGPS corrections and there might be a challenge 
for kinematic PPP.  

 
FURTHER RESEARCH 
 
To obtain better performance using WAAS orbit and 
clock corrections in PPP, it might be valuable to research 
ways to improve the resolution issue in the correction 
domain. 

Since the main advantage of using WADGPS corrections 
in PPP is to enable a real-time process, a test with 
kinematic processing might be valuable and needs more 
detailed analysis.   
 
In terms of data processing, more days and more stations 
need to be processed to examine the repeatability of the 
results presented here and to expand the processing 
capabilities of this technique. 
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