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ABSTRACT  
 
One of the major challenges in resolving ambiguities for 
longer baselines is the presence of unmodelled 
ionospheric and tropospheric delays. In this paper, we 
describe a new approach that does not rely on the 
convergence of atmospheric parameters. The new 
approach instantaneously nullifies the effect of the 
differential ionospheric delay in an ambiguity search 
process and simultaneously estimates the differential 
tropospheric delay and baseline components at every 
epoch.  
 
The performance of the new approach was demonstrated 
using the data recorded at a 1 Hz data rate at a pair of base 
stations on either side of the Bay of Fundy in eastern 

Canada and on a ferry boat, at the terminals of an 
approximately 74 km ferry route, on 21 May 2004. For 
both static and kinematic tests over the longer 74 km 
baseline, mean differences of a few millimetres were 
observed in each Cartesian component, and the 
comparison 1σ noise level was at the few centimetre level. 
 
INTRODUCTION 
 
Biases and errors such as satellite orbit error and 
atmospheric (i.e., tropospheric and ionospheric) signal 
refraction are the primary limiting factors in successful 
long-baseline, real-time kinematic (RTK) style processing 
– either in real-time or post-processing mode. These error 
sources are dependent on the distance between a reference 
and a rover receiver. If they are not adequately accounted 
for, they can result in significant positioning errors in 
long-baseline applications. This is particularly true for the 
conventional single-baseline RTK and hence reduces the 
effective inter-receiver distance of this technique to a few 
10s of km.  
 
There are effective mitigation strategies for these error 
sources. For example, the ionosphere-free linear 
combination of the L1 and L2 carrier-phase 
measurements can completely cancel first-order 
ionospheric delays. Although this appeals in mitigating 
the ionospheric errors, we have to be prepared to accept 
some costs for that. As it is difficult to fix integer 
ambiguities using the ionosphere-free observations for 
long-baselines, float ambiguity solutions (less accurate 
than fixed ones) are normally used. Due to the 
amplification of the noise by the combination, the 
solutions are less precise, too. Errors in broadcast GPS 
satellite orbits have little effect for baselines up to a few 
100 km and furthermore, can be virtually eliminated using 
precise ephemerides in post-processing mode. 
Tropospheric delay is usually estimated based on model 
atmospheric predictions and/or surface meteorological 
observations made near the stations at the time of the GPS 
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measurements. As this approach often inappropriately 
accounts for spatial and temporal variations in water 
vapor delays [Brunner and Welsch , 1993; Niell et al., 
2001], it is a common procedure to estimate a residual 
zenith delay. 
 
As an alternative approach to mitigating the error sources, 
network RTK based on multiple reference stations is used 
[Wubbena et al., 2001; Landau et al., 2002; Rizos, 2002; 
Fotopoulos and Cannon, 2001; Kashani et al., 2004]. The 
integration of several reference stations into a combined 
network provides a capability for modeling the error 
sources at a rover within the network and enables 
lengthening the baselines up to a few 100s of km. Despite 
successful implementation of network RTK for long-
baseline applications, however, its performance is not 
always equivalent to single-baseline RTK operating under 
short-baseline situations. As network RTK interpolates 
error corrections for a rover using the error estimates at 
reference stations, this approach is vulnerable to localized 
anomalous errors under unfavorable atmospheric 
conditions. For example, weather fronts and atmospheric 
conditions associated with heavy rainfall can cause rapid 
variations in the tropospheric delay [Gregorius and 
Blewitt, 1998] and subsequently, the performance of an 
RTK system can be significantly degraded even across 
relatively short baselines [Skidmore and Van Graas, 2004; 
Lawrence et al., 2006]. Such anomalies are not canceled 
in the interpolation procedure used for deriving rover 
delays. Also, solar-terrestrial interactions can cause 
significant changes in the morphology of the ionosphere, 
changing the propagation delay of GPS signals within 
time intervals as short as one minute. Such changes can 
last for several hours primarily in the polar, auroral and 
equatorial ionospheres [Langley, 2000]. During severe 
ionospheric activity, the correction accuracy deteriorates 
and adversely affects the ambiguity resolution over the 
network [Wielgosz et al, 2005; Petrovski et al., 2002].  
When a rover is located outside the network boundary, 
network RTK must extrapolate error corrections for the 
rover. As a result, network RTK can face the same 
challenges as single-baseline RTK. 
 
Over the past a few years, the University of New 
Brunswick (UNB) has carried out several research 
projects involving long baselines that, unfortunately, 
could not take advantage of network RTK. These include 
a field experiment to investigate the performance of 
different neutral atmosphere mitigation strategies during 
the 2005 mission of the Canadian Coast Guard Ship 
Amundsen (a research icebreaker) in the Canadian Arctic 
and Hudson Bay [Ghoddousi-Fard and Dare, 2006], and 
collaboration with the University of Southern Mississippi 
to advance positioning results by means of improved 
differential tropospheric modeling in the marine 
environment of the Bay of Fundy in eastern Canada [Kim 

et al., 2004]. In both studies, the number of reference 
stations deployed was not sufficient to adequately model 
the errors using network RTK. Instead, our approach for 
achieving high accuracies at greater distances from 
differential reference stations was single-baseline RTK in 
post-processing mode. 
 
In this paper, we describe an UNB approach for long-
range RTK. Although this approach was originally 
developed for single-baseline RTK over long distances in 
kinematic mode, it can be used for network RTK when 
requiring extrapolation of the differential ionosphere 
corrections for a rover located outside the network. It can 
also be used in cases where the rover located inside the 
network is experiencing local anomalies in the differential 
ionospheric delays. 
 
CONSIDERATIONS FOR A NEW APPROACH 
 
The most common approach for achieving high 
accuracies with GPS technology in kinematic situations is 
RTK-style processing. On designing an appropriate 
approach for long-range (e.g., 30-100 km) single-baseline 
RTK, we consider two basic requirements. Firstly, our 
new approach will be used in real-time applications such 
as machine guidance and vehicle navigation. More 
specifically, single epoch carrier-phase observations will 
be used to resolve ambiguities (that is, an epoch-by-epoch 
ambiguity resolution) in real-time situations. Secondly, 
the new approach will provide positioning solutions using 
fixed ambiguities rather than the ionosphere-free float 
ambiguities.  
 
The Observation Model 
 
The DD (double-differenced between satellites and 
receivers) carrier-phase observations are used in our 
approach. The linearized GPS carrier-phase observation 
model for long-range single-baseline applications is given 
as: 
 

[ ], , 1 or 2,i i i i i i i
Cov iλ= + + − + + = =yy Ax s T I N e e Q

 (1) 
 
where y is the vector of DD carrier-phase in distance 
units; x  is the vector of unknown baseline components; s 
is the vector of orbit error contributions to the DD carrier-
phase observations; T is the vector of DD tropospheric 
delays;  I is the DD ionospheric delay parameter vector 
where ( )2 2

2 1 2 1/L Lf f=I I ; A is the design matrix 
corresponding to x; N  is the vector of DD ambiguities; f 
andλ  are the frequency and wavelength of the carrier-
phase observations, respectively; e is the noise vector 
including multipath, residual ionospheric delay (e.g., 
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higher-order ionospheric effects [Bassiri and Hajj, 1993; 
Hoque and Jakowski, 2007] and ionospheric scintillation 
[Langley, 2000]) and receiver system noise; [ ]Cov ⋅  
represents the variance-covariance operator; yQ  is the 
variance-covariance matrix of the observations; and i 
indicates the L1 or L2 signal.  
 
 
The Objective Function 
 
Least-squares estimation with integer constraint for the 
ambiguity parameters is referred to as an integer least-
squares problem. The objective function to be minimized 
in the integer least-squares problem, Ω , is given as 
[Euler and Landau, 1992; Teunissen, 1995]: 
 

( ) ( )ˆ
ˆ ˆ , , 1 or 2,

i

n
i i i i i iwith iΩ = − − ∈ =

T -1
NN N Q N N N

( ( (
�

 (2) 
 
where N̂  is the vector of float ambiguity estimates; N

(
 is 

the vector of integer ambiguity candidates selected in the 
ambiguity search process; N̂Q  is the variance-covariance 
matrix of the float ambiguity estimates; � is the set of 
integers; n is the number of the observations; and, again, i 
indicates the L1 or L2 signal. 
 
Satellite Orbit Errors 
 
Errors in broadcast GPS satellite orbits have little effect 
for baselines up to a few 100 km and furthermore, can be 
virtually eliminated using precise ephemerides in post-
processing mode. Using the well-known “rule of thumb” 
validated using International GNSS Service (IGS) data, an 
approximate baseline component error becomes around 2 
cm over a baseline of 100 km with around 4 m orbital 
error [Beutler, 1998; Ziebart et al., 2002]. 
 
Broadcast Orbits The errors of the broadcast orbits can be 
statistically quantified by comparing the broadcast orbits 
with the IGS Final or IGS Rapid product. The IGS rapid 
products have a quality comparable to that of the final 
products. Figure 1 shows the weighted r.m.s. errors of the 
broadcast orbits with respect to the IGS rapid product 
[IGS GFZ, 2007]. We also do an automated daily analysis 
on the broadcast orbits at UNB [UNB GGE, 2007]. As 
illustrated in Figure 1, the weighted r.m.s. errors of the 
broadcast orbits are currently much smaller than 4 m, 
which may result in smaller than 2 cm baseline 
component errors over a baseline of 100 km. As the 
effects of the broadcast orbit errors are not significant for 
a baseline of up to 100 km, therefore, we can safely 
ignore the orbit error term s in Eq. (1) when using the 
broadcast orbits in real-time applications.  

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 1. broadcast orbit errors compared with the IGS 
Rapid product, created by the IGS Analysis Center 
Coordinator at GFZ (GeoForschungsZentrum) Potsdam. 
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Figure 2. Double-differenced broadcast orbit errors based 
on a comparison with the NGA APC precise ephemeris 
for the long baselines, projected onto the range direction. 
 
NGA Precise Orbits The National Geospatial-intelligence 
Agency (NGA) provides precise GPS ephemeris files 
referenced to satellite antenna phase center (APC) rather 
than center of mass. Figure 2 shows an example of 
double-differenced broadcast orbit errors compared to the 
NGA APC precise ephemeris for long baselines. These 
orbit errors were projected onto the range direction. The 
top panel shows the distances (about 74 km) between a 
base station and a rover, the middle panel shows the 
elevation angles of the paired satellites used in double 
differencing, and the bottom panel shows the broadcast 
orbit errors in the range direction. The jump in the range 
error plot is due to a switch in two-hour broadcast 
ephemeris sets. It is obvious that range error differences 
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using the broadcast orbit can reach up to a few cm for the 
long baselines. Compared to the wavelength of the 
carrier-phase observations, however, range errors due to 
the broadcast orbits are not significant. This confirms that 
we can safely ignore the orbit error term s in Eq. (1) when 
using the broadcast orbits in real-time applications over a 
baseline of up to 100 km. 
 
Ionospheric Delays 
 
The ionosphere-free linear combination and ionosphere 
modeling as a state work well for long baselines once the 
parameter (i.e., ionospheric delay or float ambiguities) 
converges although it takes typically a few hours. In real-
time applications requiring millimetre accuracy, however, 
these approaches are not practical. Instead, we use the 
ionosphere-nullification technique [Kim and Langley, 
2005] that instantaneously nullifies the effect of the 
differential ionospheric delay in an ambiguity search 
process. 
 
The Ionosphere Observable In the ionosphere-
nullification technique, the ionospheric delay can be 
derived from the geometry-free combination (that is, the 
difference of L1 and L2 carrier-phase observations in 
distance units) once the L1 and L2 ambiguity parameters 
are given as known values. The L1 and L2 ionosphere 
observables are given as: 
 

( )
2
2

1 1 2 1 1 2 22 2
1 2

2
1

2 12
2

ˆ

ˆ ˆ ,

L

L L

L

L

f
f f

f
f

λ λ
⎛ ⎞ ⎡ ⎤= − − −⎜ ⎟ ⎣ ⎦−⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

I y y N N

I I

( (

  (3) 

 
where again, N

(
 is the vector of integer ambiguity 

candidates selected in the ambiguity search process. As 
the tropospheric delay and satellite orbit error do not 
depend on the signal frequency, they are completely 
eliminated by differencing the L1 and L2 carrier-phase 
observations in Eq. (3). Therefore, these two error sources 
are irrelevant to the ionosphere observable. This aspect of 
the ionosphere observable enables us to isolate the 
ionospheric delay from the tropospheric delay and 
satellite orbit error in long-baseline situations and to 
evaluate its effects on the performance of long-range RTK. 
 
Ionosphere Nullification It is assumed in the ionosphere-
nullification technique that we can combine the two 
independent L1 and L2 ambiguity search processes into 
one simultaneous ambiguity search process. When a pair 
of L1 and L2 ambiguity candidates is selected in the 
simultaneous ambiguity search process, we can virtually 
eliminate the large residual ionospheric effects (i.e., the 
first-order differential ionospheric delays) using the 

ionosphere observable in Eq. (3). Furthermore, this 
approach is able to instantaneously eliminate the 
differential ionospheric delay. 
 
As the ionosphere-nullification technique estimates the 
ionospheric delays and ambiguities simultaneously using 
single epoch carrier-phase observations (that is, an epoch-
by-epoch ambiguity resolution), this technique may be 
less reliable than alternatives which model the 
ionospheric delays as a state in a Kalman filter or a 
sequential least-squares estimator. This is more likely to 
be true especially when the number of satellites being 
observed is insufficient (e.g., less than or equal to 6 
satellites). However, under a typical condition (e.g., more 
than 6 satellites), the performance of the ionosphere-
nullification technique is comparable to the alternatives. 
 
Tropospheric Delays  
 
In precise applications requiring millimetre accuracy, the 
tropospheric delay can be estimated by a simple 
parameterization of the tropospheric delay. The line of 
sight delay D is expressed as a function of four 
parameters as follows [McCarthy and Petit, 2003]: 
 

( ) ( ) ( ) ( ) ( )cos sinh hz w wz g N ED m el D m el D m el G az G az= + + +⎡ ⎤⎣ ⎦
      (4) 
 
where hzD  is the zenith hydrostatic delay; wzD  is the 
zenith non-hydrostatic or wet delay; NG  and EG  are the 
north and east delay gradient in distance units, 
respectively; hm , wm  and gm  are the hydrostatic, wet 
and gradient mapping functions, respectively; el is the 
non-refracted elevation angle at which the signal is 
received; and az is the azimuth angle at which the signal 
is received, measured east of north. 
 
Under typical atmospheric conditions, GPS data may not 
have the sensitivity to detect atmospheric gradients and 
azimuthal asymmetry as included in Eq. (4). In such a 
case, the tropospheric delay can be estimated by 
restricting the residual error to the zenith delay 
components, such that:  
 

( ) ( )h hz w wzD m el D m el D= + .   (5) 
 
Hydrostatic Delay  For the most accurate a priori 
hydrostatic delay, the formula of Saastamoinen [1972] as 
given by Davis et al. [1985] is used in this paper as:  
 

( )
( )

00.0022768 0.0000005
1 0.00266 cos 2 0.00028hz

P
D

Hφ
±

=
− −

,  (6) 
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where 0P  is total atmospheric pressure in millibars at the 
antenna reference point; φ  is the geodetic latitude of the 
site; and H  is the height above the geoid (km). 
 
Mapping Functions   For the hydrostatic and wet 
mapping functions, Niell’s NMF (New Mapping 
Functions) [Niell, 1996] are used in this paper. The NMF 
adopts the same form of Herring [1992] as:  

( )
( ) ( )

1
1

1( , , , )
sin

sin
sin

a
b

cf el a b c
ael bel

el c

+
+

+=
+

+
+

, (7) 

 
In the NMF, unlike the Herring model, the hydrostatic 
mapping function is dependent on latitude, season (i.e., 
day of the year) and the height above the geoid of the 
point of observation while the wet mapping function is 
dependent on latitude only. The NMF are given by 
 

( ) ( )
( )

1( , , , ) ( , , , )
sin

( , , , ),

h h ht

w w

m el f el a b c f el a b c H
el

m el f el a b c

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦
=

 (8) 

 
where again, el is the elevation angle at which the signal 
is received; H  is the height above the geoid (km); and 
subscripts h, w and ht indicate that the function f uses the 
coefficients a, b and c corresponding to the hydrostatic 
and wet mapping functions and height correction, 
respectively. 
 
For the gradient mapping function, Chen and Herring 
[1997] is used in this paper as:  
 

( ) ( ) ( )g
1m

sin tan 0.0032
el

el el
=

+
.   (9) 

 
ESTIMATION MODEL 
 
Assuming that accurate real-time meteorological data are 
available at a reference station and a rover, we can use Eq. 
(6) to remove the hydrostatic delay in Eq. (4) or (5). To 
avoid a mathematical correlation between the partial 
derivatives of the tropospheric delay at two stations, the 
levering technique [Rocken et al., 1995] can be used, 
which fixes the tropospheric delay at the reference station 
and estimate the relative delay at the rover. Then, from Eq. 
(4) or (5), the DD tropospheric delay T is given by 
 

( ) ( )uv uv uv
AB B AT SD D SD D mD= − = +mτ ,  (10) 

 

where ( )SD ⋅  is the single-difference (between satellites u 
and v) operator; subscripts A and B indicate a reference 
station and a rover, respectively; and 
 

( ) ( )
( ) ( ) ( )cos( ) sin( )

uv uv
B h hz A h hz

uv uv uv
B w B g B g

mD SD m D SD m D

SD m SD m az SD m az

= −

⎡ ⎤= ⎣ ⎦m
 

[ ] .T
wz N ED G G=τ     (11) 

By substituting Eqs. (10) and (11) into Eq. (1), and 
ignoring the orbit error term s in Eq. (1), we will have a 
new carrier-phase observation model for long-range 
single-baseline applications as:  
 

[ ], , 1 or 2,i i i i i i i
Cov iλ ′′ ′ ′= − + + = =yy Bz I N e e Q  (12) 

 
where 
 

, [ ], [ ]T T T
i i′ = − = =y y mD B A M z x τ  (13) 

 
and [ ]1

T
nmD mD=mD L ; 1

TT T
n⎡ ⎤= ⎣ ⎦M m mL ; 

and n is the number of DD carrier-phase observations. 
Note that the new carrier-phase observation model in Eq. 
(12) can be used to estimate the unknown parameters (i.e., 
the baseline components x, the tropospheric delay τ) at 
every epoch. The ionospheric delay I and ambiguities N 
are resolved in the ambiguity search process using the 
ionosphere nullification technique. 
 
Adaptive Estimator 
 
Since the tropospheric delays will not change 
dramatically under a typical atmospheric condition over a 
short time period, it might be better to estimate adaptively 
the tropospheric delay parameter as: 
 

( ) 1ˆ 1 , 0 1k k kα α α−= + − < ≤τ τ τ ,   (14) 
 
where ˆ kτ  is the estimate of the tropospheric delay 
parameter at epoch k; kτ  is the adaptive estimate of ˆ kτ ; 
and α is a forgetting factor which is reciprocal to a 
correlation time (i.e., a smoothing time interval). 
Depending on an atmospheric condition, we can control 
the correlation time of the tropospheric delay parameter 
by changing α. Substituting ˆ kτ  into Eq. (12) gives   
 

, , , , , ,
, , 1 or 2i k k k i k i i k i k i k i k

Cov iλ ′′′′ ′ ′ ′′ ′′⎡ ⎤= − + + = =⎣ ⎦ yy B z I N e e Q

      (15) 
 
where 
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, , 1
1

1 ,

i k i k k k

TT T
k k k k k k

α
α

α

−

−′′ ′= +

⎡ ⎤′ ′ ⎡ ⎤= =⎢ ⎥ ⎣ ⎦⎣ ⎦

y y M τ

B A M z x τ
  (16) 

 
Finally, Eq. (15) can be initialized using 0 0ˆ=τ τ  where 

0τ̂  is an estimate of the tropospheric delay parameter at 
an initial epoch. It should be noted that the ionosphere 
observable in Eq. (3) will not be changed by this carrier-
phase observation model. We use this observation model 
in our approach for real-time applications. 
 
The Ionosphere-Nullification Approach   
 
Assuming that a simultaneous search process for L1 and 
L2 ambiguity parameters has been established, a pair of 
L1 and L2 ambiguity candidates can be selected in the 
process. Then, we can derive the L1 and L2 ionosphere 

observables in Eq. (3) using the ambiguity candidates. As 
a matter of fact, each ambiguity candidate provides its 
corresponding ionosphere observation. Once we have a 
new ionosphere observation, we can estimate a new float 
ambiguity estimate, ˆ

iN , as given in Figure 3. This new 
float ambiguity estimate is virtually free from the effects 
of the ionospheric delay. It should be noted that the 
updated variance-covariance matrix, 

0
ˆ ˆ ˆ,( )

i i i
=N N IQ Q , as 

well as the float solutions, 0
ˆ

iN  and 
0

ˆ
iNQ , are computed 

once for every epoch’s observations outside the ambiguity 
search space. We have to carry out the same procedure on 
each candidate sequentially until no ambiguity candidate 
remains. Then, our goal is to find the ambiguity candidate 
that minimizes the objective function in Eq. (2). Figure 3 
shows the ionosphere-nullification procedure. 

 

Observation Equations
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f
f f
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λ λ
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Figure 3.  Ionosphere-nullification procedure incorporated in the ambiguity search process for long-range single-baseline 
RTK applications.  
 
One issue involved with the ionosphere-nullification 
technique is that the ionosphere observables in Eq. (3) are 
apt to be affected by multipath, receiver system noise and 
residual ionospheric delay. As tropospheric delay and 
satellite orbit error are eliminated, they are irrelevant to 
the ionosphere observables. From Eq. (3), the noise terms 
of the ionosphere observables become 
 

[ ]
2
2

1 1 2 1 22 2
1 2

ˆ( ) L

L L

f
f f

⎛ ⎞
= − + −⎜ ⎟−⎝ ⎠

ε I e e m m% %  

2
1

2 12
2

ˆ ˆ( ) ( ),L

L

f
f

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

ε I ε I     (17) 

 
where ( )⋅ε  denotes the noise associated with the 
ionosphere observable and e%  represents the noise vector 
without residual orbit error and residual tropospheric 
delay. It should be noted that multipath is normally a 
dominant error source in the ionosphere observables. So 
ideally, a GPS antenna should be installed in a clear place 
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with no close-by reflector in the vicinity of the antenna if 
the ionosphere-nullification technique is to be used in 
RTK processing. Otherwise, we need to reduce the effects 
of multipath in the carrier-phase observations when we 
process the data. The ‘Filtering’ block in Figure 3 can be 
designed to help take care of this issue. 
 
TEST RESULTS 
 
Two GPS reference stations had been deployed at the 
Canadian Coast Guard building in Saint John, New 
Brunswick (CGSJ) and at the Digby Regional High 
School in Digby, Nova Scotia (DRHS), on either side of 
the Bay of Fundy, near the terminals of an approximately 
74 km marine ferry route (see Figure 4). Two geodetic-
grade receivers (NovAtel’s DL-4 receivers and GPS-600 
antennas) had been installed at the reference stations. 
Also, the same type of receiver had been installed on the 
ferry – the Princess of Acadia. Surface meteorological 
equipment had also been collocated with the three 
receivers. This ferry repeats the same routes between two 
and four times daily, depending upon the season. The Bay 
of Fundy is located in a temperate climate region with 
significant seasonal tropospheric variations (e.g., 
temperatures between -30°C and +30°C). Data had been 
collected over the course of one year from the daily ferry 
runs. 
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Figure  4.  Test data for comparing long/short baselines to 
the same rover. 
 
Using the UNB RTK software, we post-processed the 
data recorded at a 1 Hz data rate at the pair of base 
stations (CGSJ and DRHS) and the ferry boat on 21 May 
2004. We used a zero elevation cutoff angle for data 
processing. One of the tools we use to assess the success 
of atmospheric modeling or other approaches such as the 
ionosphere-nullification technique, is the comparison 
between short baseline (e.g., less than a few 10s of km) 

RTK solutions (for which RTK is generally regarded as 
reliable and uncontaminated by differential atmospheric 
uncertainties) and simultaneous position solutions from 
longer RTK baselines over which the atmospheric models 
or other approaches are being assessed. As we intended to 
compare long/short baselines to the same rover to 
characterize long-baseline positioning performance, we 
processed a subset of the data near the end of a ferry run 
that provides such long/short baselines. Figure 4 
illustrates the ferry crossing from Digby to Saint John and 
the data subset used. This situation provided both short (< 
3 km) and long (> 73 km) baselines at the same time for 
one hour.  
 
Ionosphere Nullification 
 
The DD ionospheric delays in Figure 5 are epoch-by-
epoch estimates obtained by the ionosphere-nullification 
technique incorporated in the ambiguity resolution 
process. How do we know that the ionospheric delays in 
the L1 and L2 carrier-phase measurements are eliminated 
by the ionosphere-nullification technique? We can 
confirm this by examining the residual error in each 
observation. From Eq. (15), the ionosphere-nullified 
observations are given as: 
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where 1,IFy  and 2,IFy  are the ionosphere-nullified L1 and 
L2 observations, respectively; and IFy  is the ionosphere-
free linear combination. Then, the noise terms of the 
ionosphere-nullified observations become 
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All three observations have the same noise components in 
Eq. (19). Note that the ionosphere-nullified L1 and L2 
noise terms include multipath, residual orbit error, 
residual tropospheric delay, residual ionospheric delay 
and receiver system noise contributions from both 
frequencies. The ‘Filtering’ block in Figure 3 can be 
designed to reduce the high-frequency components of 
these errors.  
 
Figure 6 shows that the residuals of the L1 and L2 
observations are almost identical to those of the 
ionosphere-free linear combinations. This implies that the 
effects of the ionospheric delays have been successfully 
nullified in the L1 and L2 observations. Minor differences 
in the residuals of the three observation types come from 
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the noise models used for least-squares estimation. For 
simplicity, we did not propagate the uncertainty of the 
ionospheric delay estimates into the ionosphere-nullified 
L1 and L2 observations. The effects of this negligence are 
insignificant as seen in Figure 6. 
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Figure 5.  Double-differenced ionospheric delay estimates 
obtained by the ionosphere-nullification technique 
incorporated in ambiguity search process. 
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Figure 6.  Residuals of the ionosphere-nullified 
observations after fixing ambiguities.  
 
Estimation of the Tropospheric Delay 
 
An unmodelled tropospheric zenith delay error causes an 
error in height determination. At very high elevation 
angles, an error in the tropospheric zenith delay is almost 
indistinguishable from the unmodelled height component. 
The zenith delay error can be well recovered at the low 
elevation angles, which can subsequently increase the 
error in height determination if not done correctly. These 
results can be improved if tight constraints are placed on 

the station height components in static applications 
[Collins and Langley, 1997].  
 
On the other hand, the adaptive estimator represented by 
Eq. (15) can be used in kinematic applications as well as 
static applications. The adaptive estimator captures the 
changes of satellite geometry and mapping functions over 
a relatively short time period. This ability of the adaptive 
estimator enables us to distinguish the tropospheric zenith 
delay from the unmodelled height component. Figure 7 
shows the condition number associated with k′B  in Eq. 
(16), which is defined by the ratio of maximal and 
minimal eigenvalues of T

k k′ ′B B . The condition number is 
a measure of how numerically well-conditioned or ill-
conditioned the problem is. A lower condition number 
means that the tropospheric zenith delay is more 
distinguishable from the unmodelled height component. 
The top panel in Figure 7 shows the condition number for 
the single-epoch observation model in Eq. (12) while the 
middle panel is for the adaptive estimator. After around 
2300 seconds in the elapsed time, the adaptive estimator 
converges to a low condition number while the single-
epoch observation model does not. A sudden change of 
the condition number is due to the change of satellite 
constellation as illustrated in the bottom panel. 
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Figure 7.  Condition numbers without atmospheric 
gradients and azimuthal asymmetry. 

 
Figure 8 shows the wet zenith delay estimated at every 
epoch, without the assumption of atmospheric azimuthal 
asymmetry and use of gradient estimation. We can clearly 
see the effects of the forgetting factor α on the wet zenith 
delay estimates. When 1α = , we obtain noisy wet zenith 
delay estimates as no smoothing process works on the 
estimates. On the other hand, we will have a smoother wet 
zenith delay estimate when α becomes smaller.  
 

646



 

0 500 1000 1500 2000 2500 3000 3500
−0.05

0

0.05

0.1

0.15
Troposphere Estimation [CGSJ−DRHS, 21 MAY 2004: 481463.0]

D
w

z [
m

]

Elapsed Time [second]

α = 1
α = 0.1
α = 0.01
α = 0.001

 
Figure 8.  Effects of the forgetting factor α on the wet 
zenith delay estimates.  
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Figure 9. Convergence test of positioning solutions 
(vertical component) for different forgetting factors.  
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Figure 10.  Convergence test of positioning solutions 
when 0.001α = . 
 
The convergence patterns of positioning solutions 
(vertical component) are illustrated in Figure 9. The 
reference solutions were determined by least-squares 
estimation after removing the atmospheric delays and 
ambiguities which can be estimated by fixing the 
coordinates of two reference stations, CGSJ and DRHS. 
Normally, a better performance of the adaptive estimator 
is anticipated for a smaller forgetting factor (i.e., a longer 
smoothing time interval) under typical atmospheric 
conditions. However, its performance may not be the 
same under severe atmospheric conditions. Figure 10 
illustrates how well positioning solutions converge to the 
reference solutions when 0.001α = . 
 
We also tried to estimate the tropospheric delays with 
atmospheric gradients and azimuthal asymmetry. In this 
case, the tropospheric parameter vector includes the wet 
zenith delay wzD  and the horizontal (north NG  and east 

EG ) delay gradients. Figure 11 shows the tropospheric 
parameters estimated at every epoch when 0.001α = . 
The zenith wet delay and the north delay gradient did not 
converge for a relatively long time period. It took about 
fifty minutes before they converged. Furthermore, as 
illustrated in Figure 12, positioning solutions were biased 
with respect to the reference solutions. The horizontal 
components (especially, the north solution) were more 
significantly biased than the vertical components.  
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Figure 11.  Estimates of the wet zenith delay and the 
horizontal delay gradient when 0.001α = . 
 
The condition numbers in Figure 13 explain why we had a 
poor performance with atmospheric gradients and 
azimuthal asymmetry. For both the single epoch 
observation model (top panel) and the adaptive estimator 
(middle panel), we had very high condition numbers. This 
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means that the tropospheric parameters are almost 
indistinguishable from the unmodelled position 
components. To improve its performance, we may need a 
longer smoothing time interval or more satellites in lower 
elevation angles. Unfortunately, this may not be practical 
for real-time applications. 
 

0 500 1000 1500 2000 2500 3000 3500
−0.2

0

0.2
Position Solutions [CGSJ−DRHS, 21 MAY 2004: 481463.0]

dN
 [

m
]

α = 0.001

0 500 1000 1500 2000 2500 3000 3500
−0.2

0

0.2

dE
 [

m
]

α = 0.001

0 500 1000 1500 2000 2500 3000 3500
−0.2

0

0.2

dU
 [

m
]

Elapsed Time [second]

α = 0.001

Ref Est

Ref Est

Ref Est

 
Figure 12.  Convergence test of positioning solutions 
(horizontal and vertical components) when 0.001α = . 
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Figure 13.  Condition numbers with atmospheric gradients 
and azimuthal asymmetry. 
 
Static Results 
 
A total of three permanent stations already in operation 
have been used to compute the geodetic coordinates of 
CGSJ and DRHS. One station is located in Fredericton, 
New Brunswick: the IGS station UNB1 (now UNBJ), on 
the UNB Fredericton campus. The other two stations are 
the U.S. CORS station ESPT, in Eastport, Maine, run by 
NOAA, and the IGS station HLFX, in Halifax, run by 
Natural Resources Canada. Seven days of raw GPS data 

from each of the five reference stations were processed 
with the Bernese V4.2 software [Hugentobler et al., 2001]. 
During the processing, the IGS final SP3 orbit product 
was used and the coordinates of all three permanent 
stations were held fixed to their published ITRF00 
coordinates to estimate the coordinates of CGSJ and 
DRHS. The formal estimated uncertainty of these 
coordinates was smaller than 2 mm. 
 
The first step in the RTK processing to validate the 
success of our approach was a confirmation of the RTK 
positioning solutions using the data recorded at CGSJ and 
DRHS. In this case, although test data was recorded in 
static mode, the data was processed as if it was obtained 
in kinematic mode. CGSJ was treated as the base station 
and DRHS as the rover. We present the statistics for the 
ambiguity-fixed RTK positioning solutions between 
CGSJ and DRHS in Table 1.  
 

Table 1.  Summary statistics for ambiguity-fixed RTK 
solutions, CGSJ to DRHS. 

 Mean (cm) Std. (cm) r.m.s. (cm) 
dX -0.1 1.1 1.1 
dY -0.2 2.3 2.3 
dZ -0.3 1.5 1.5 
dN 0.5 1.4 1.5 
dE 0.6 1.3 1.4 
dU 0.4 2.3 2.3 

 
Kinematic Results 
 
Since we have validated the success of the ionosphere-
nullification approach using the data recorded in static 
mode at CGSJ and DRHS, we further tried to confirm its 
validity using the data collected in kinematic mode with 
the onboard GPS receiver. A pair of long/short baselines 
(i.e., DRHS to BOAT and CGSJ to BOAT) was estimated 
at each epoch and used to characterize long-baseline 
positioning performance.  
 
After a pair of long/short baselines was estimated at each 
epoch, baseline components were compared for each pair 
of solutions. Figure 14 illustrates that there is only a few 
cm variation between the long and short RTK positioning 
solutions. Table 2 provides the summary statistics. A few 
mm mean differences are observed in each Cartesian 
component, and the comparison 1σ noise level is at the 
few cm level. 
 

Table 2.  Summary statistics for differences between 
ambiguity fixed RTK solutions: CGSJ to BOAT and 

DRHS to BOAT. 
 Mean (cm) Std. (cm) r.m.s. (cm) 

dX -0.1 0.9 0.9 
dY -0.2 1.7 1.7 
dZ -0.3 1.6 1.6 
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dN -0.3 1.2 1.2 
dE -0.2 1.0 1.0 
dU -0.1 2.0 2.0 
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Figure 14.  Difference of RTK positioning solutions, 
CGSJ to BOAT (short baseline) and DRHS to BOAT 
(long baseline) in local geodetic coordinates.  
 
CONCLUSIONS 
 
We have experienced a number of challenges in resolving 
ambiguities for longer baselines. One of the major 
challenges is the presence of unmodelled atmospheric (i.e., 
ionospheric and tropospheric) delays. In this paper, we 
discussed another possible approach that does not rely on 
the convergence of a parameter (atmospheric delay or 
float ambiguities), but which nullifies and estimates the 
effect of the differential atmospheric delay in the 
ambiguity search process.  
 
We propose the ionosphere-nullification technique which 
can virtually eliminate the large first-order ionospheric 
effects using the ionosphere observable in the 
simultaneous ambiguity search process. We also propose 
the adaptive estimator for estimating the tropospheric 
delays. 
 
Although this technique was originally developed for 
single-baseline RTK over long distances in kinematic 
mode, it can be considered as an alternative approach or a 
parallel process for network RTK when requiring 
extrapolation of the differential ionospheric corrections 
for a rover located outside the network. It can be also used 
in cases where the rover located inside the network is 
experiencing localized anomalous ionospheric delays due 
to severe ionospheric activity. We plan to implement this 
technique into our network RTK software which is 
currently under development.  
 

The performance of new approach was demonstrated 
using data recorded at a 1 Hz data rate at a pair of base 
stations on either side of the Bay of Fundy in eastern 
Canada, the terminals of an approximately 74 km ferry 
route. Data was also recorded on the ferry boat itself 
when the boat was at or near a terminal. For both static 
and kinematic tests over the 74 km baseline, a few mm 
mean differences were observed in each Cartesian 
component, and the comparison 1σ noise level was at the 
few cm level. 
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