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ABSTRACT  
 
For dual-frequency GPS observables, one of the largest 
error sources affecting high-precision positioning solutions 
arises from the unmodelled troposphere. In normal 
tropospheric cases, it is difficult to evaluate its positioning 
impacts as the estimated parameters may be obscured by 
other error sources. In this paper, we have extensively 
analyzed GPS network data from one of the most 
inhomogeneous atmospheric cases. We have examined the 
positioning impacts due to additional tropspheric gradient 
parameter estimation. In total, a data set from 18 GPS 
stations for 9 days from the Korea peninsula has been 
collected and processed during the passage of typhoon 
RUSA in 2002. Based on the estimated tropospheric delays 

from the GPS observables, the precipitable water vapor 
(PW) has been calculated in order for it to be evaluated and 
compared with those from independent observables 
(radiosonde and real precipitation records). GPS-derived 
PW values (with the inclusion of the gradients) demonstrate 
that they are correlated with the time series of radiosondes 
and actual precipitation. In this imbalanced network case, 
we investigated the possible positioning improvement 
including the gradient parameters in the processing. Unlike 
when under normal tropospheric conditions, the additional 
gradient parameter estimation can greatly reduce the 
instability of a coordinate solution. In addition, we observed 
that this could be more important for a station which 
experienced more inhomogeneity from the troposphere. 
 
 
INTRODUCTION 
 
The received Global Positioning System (GPS) signal 
experiences many different error sources, but most of them 
can be well modelled or be well minimized. This is true 
especially in relative GPS positioning due to temporal and 
spatial correlation of the errors. Unlike the ionospheric 
errors and orbital errors, which can be reduced to 
sufficiently low manageable levels, errors in the 
tropospheric delay, which mostly contribute to errors in the 
height component of the station’s coordinate estimates, are 
known to be one of the largest limiting factors for high 
accuracy GPS positioning, at the current time. Typically, 
the troposphere error equals 2.5 m in the zenith direction. It 
can be separated into two components, dry and wet 
component. The dry component which consists of 90% of 
total delay is stable and well predictable, whereas the wet 
component is highly variable. Assuming hydrostatic 
equilibrium, the dry component is well predicted whenever 
the surface pressure is known. Then the estimated dry 
component can be subtracted from the total delay to get the 
wet component. The wet component varies from a few mm 
level at the poles to up to 40 mm in the zenith direction in 
the tropics, and changes significantly in the direction of a 
weather front. As the highly variable tropospheric water 
vapor content makes the troposphere more difficult to 
model, problems exist for high accuracy geodetic 
applications. Standard troposphere mitigation approaches 
assume azimuthal symmetry as the tropospheric delay is 
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assumed to vary only with elevation angle. The 
asymmetries in the tropospheric refraction are important at 
low elevations which should be estimated as well as the 
common zenith delays. This is especially true when a 
typhoon is nearby, or other extreme localized weather 
conditions, causing the atmosphere to be extremely 
inhomogeneous resulting in degradation of GPS positioning 
results. Similar to the ionospheric scintillation effects, 
severe tropospheric effects can also result in fading phase 
and signal strength such that the GPS receiver can not track 
the satellite signals. In addition to other degrading effects 
on a GPS network (such as the increase noise of a receiver 
due to thermal noise, cable, or environment factors 
[Langley, 1997]), these atmospheric effects severely affect 
the entire network solution as well. These imbalanced 
network errors can be transferred to the other network 
solutions or rover solutions. Even for a short baseline, 
imbalanced atmospheric errors are shown to have a severe 
impact on rover positioning solutions, resulting in a 
worsening of the quality of the positioning solutions [Ahn 
et al., 2006; Lawrence et al., 2006; Zhang and Bartone, 
2006; and Huang and van Graas, 2006].  
 
 
MOTIVATION 
 

Imbalanced network errors can degrade the entire 
positioning performance. Such an imbalanced atmospheric 
phenomenon described in the above section has been 
observed in many different networks around the world. 
These include severe sand or dust storms, ionospheric 
scintillation effects, localized or regional tropospheric 
anomaly effects, etc. [Comparetto, 1993]. Occasionally, 
these phenomena are observed when a strong tropospheric 
anomaly exists within a network. This can adversely affect 
RTK rover positioning solutions as well as making the 
entire network solution corrupt. One such condition has 
been observed on a number of GPS permanent stations in 
Korea when a severe typhoon passed through the nation 
from 31st August to 1st Sepember 2002. At the peak of the 
precipitation on 31st August, receivers could not track the 
signals due to the lowered signal to noise ratio (SNR). 
Fading of the signals is caused by several factors such 
multipath, cables, bad line of sight due to the obscured 
Fresnel zone, or weather conditions. Under severe 
tropospheric conditions, the standard mitigation approach 
based on modeled or empirical mitigation is limited. The 
unmodeled errors will adversely affect the rover positioning 
solution as well as make the entire network solutions 
corrupt. Our research focus is to evaluate the possible 
positioning impacts from severe tropospheric 
inhomogeneous conditions through the inclusion of 
tropospheric gradient parameters in the processing. 

 
 
 
 

METHODOLOGY 
 
The neutral atmosphere is comprised of the actual 
troposphere, the tropopause and the stratosphere. The 
tropospheric delay of GPS signals depends on the index of 
refraction n along the signal path through the neutral 
atmosphere. The geometrical distance is different from the 
actual path due to different path delays in the troposphere 
and a vacuum. Total (or neutral) slant path delay is given by 
[Schuler, 2001] 
 

( ) ( ( ) 1) bending.trp
path vac path

n s ds ds n s dsδρ = − = − +∫ ∫ ∫  (1) 

 
For elevation angles above 20 degrees, the bending effect is 
less than 3 mm. However, for 5-degree elevation angles, the 
effect can be as larger as 17 cm [Skone, 2003]. This total 
delay can be divided into a hydrostatic (dry) 
component hδρ  and a non-hydrostatic (wet) component 

wδρ  as:  
 

.trp h wδρ δρ δρ= +     (2) 
 
In Eq. (1), the index of the refractivity (that is, the ratio of 
the speed of the propagation of electromagnetic wave in 
vacuum to the speed of the propagation of the medium) can 
be expressed in term of the refractivity, 6N 10 ( 1)n= − . The 
refractivity of humid air in a frequency band between 100 
MHz and 20 GHz is given by Thayer [1974] as: 
 

1 1 1
1 2 3 2 ,d

d w w
p e eN k Z k Z k Z
T T T

− − −= + +   (3) 

where 
dp  : partial pressure of dry air (mbar), dp p e= −  with p 

being the total pressure, 
e : partial pressure of water vapor (mbar), 
T  : temperature ( o K ), 

1 2 3, ,k k k : refraction constants ( o K /mbar, o K /mbar, 
o 2K/mbar ), 

1
dZ − , 1

wZ − : inverse compressibility factors for dry and wet 
air which are empirical factors. 

 
The first term in Eq. (3) is the hydrostatic component of the 
tropospheric delay and represents the effect of the induced 
dipole moment of the dry component. The second term is 
related to the dipole moment of water vapor and the last 
term represents the dipole orientation effects of the 
permanent dipole moment of water vapor molecules. The 
last two terms in Eq. (3) constitute the wet component of 
the refractivity. The refraction constants 1 2,k k  and 3k  are 
determined empirically. The inverse compressibility 
accounts for the difference between ideal gas assumptions 
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and non-ideal gas behavior. The inverse compressibility and 
the pressure of water vapor are given by [Schuler, 2001;  
Thayer, 1974] 
 

( )
2

1 8 4
2

1 4 2 6 3
3

37.2465 0.213166 0.000256908

0.521 57.97 10 1 9.4611 10

1 1650 1 0.01317 1.75 10 1.44 10

,
100

c
d d

w c c c

T Trh

T
Z p

T T
eZ T T T

T
H

e e

− − −

− − −

− + −

⎛ ⎞⎛ ⎞= + ⋅ ⋅ ⋅ + − ⋅ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= + ⋅ − + ⋅ + ⋅

=

    (4)  

 
where 

cT   : temperature in ( Co ), 

T   : temperature ( o K ), 
rhH : relative humidity (%). 

 
The inverse compressibility factors 1

dZ −  and 1
wZ − are 

associated with dry and wet air, respectively. They are 
empirically determined and can be modeled as a function of 
pressure and temperature as shown in Eq. (4). To define the 
zenith delay, it is necessary to express the refractivity in Eq. 
(3) in terms of the hydrostatic and wet components. With 
the assumption of hydrostatic equilibrium, the following 
relationship can be made: 
 

1 1
1 1 1

1
1 1 ,

d d d d
d d d d

d o o w
w

d d d

p R TZ
k Z k Z k R

T T
R R Mek k Z

M M T M

ρ
ρ

ρ ρ

− −

−

= =

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠

  (5) 

where 

oR  : universal gas constant ( -1 o -1J mol K ), 

dR  : specific gas constant for dry air, 

wM  : molar weight of wet air ( -1kg kmol ), 

dM   : molar weight of dry air ( -1kg kmol ), 

dρ  : density of dry air ( -3kg m ), 

ρ  : total density for dry and wet air ( -3kg m ). 
 
By substituting Eq. (5) into Eq. (3), the refractivity can be 
rewritten as: 
 

1 1 1
1 2 3 2

' 1 1
1 2 3 2

o w
w w w

d d

o
w w

d

R Me e eN k Z k Z k Z
M T M T T

R e ek k Z k Z
M T T

ρ

ρ

− − −

− −

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠

= + +

 (6) 

 
and 
 

'
2 2 1 ,w

d

M
k k k

M
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

     (7) 

where 
o

1 77.6 0.05( K/hPa)k = ± , 
o

2 70.4 2.2( K/hPa)k = ± , 
5 o 2

3 (3.739 0.02) 10 ( K /hPa)k = ± × . 
 
Eq. (6) is useful because it allows a strict separation 
between the hydrostatic and the wet components. The 
hydrostatic component, from Eq. (6), becomes 
 

1
o

d
d

R
N k

M
ρ

=      (8) 

 
and the wet component becomes 

' 1
2 3 2 .w w

e eN k k Z
T T

−⎛ ⎞= +⎜ ⎟
⎝ ⎠

    (9) 

 
The zenith hydrostatic (ZHD) and wet delay (ZWD) can be 
defined as: 
 

610
s

d
h

ZHD N dh
∞

−= ∫     (10) 

610 ,
s

w
h

ZWD N dh
∞

−= ∫               (11) 

where 
sh  : surface height, 

dh : differential increment in height. 
 
Almost 90% of the total delay occurs in the hydrostatic 
component, which varies slowly with time. This hydrostatic 
delay can be easily modeled with the assumption of 
hydrostatic equilibrium to an accuracy at a millimetre level 
[Mendes and Langley, 1995]. Unlike the hydrostatic part, 
the wet part has strong spatial and temporal variations. The 
effects of wet delay to the range can reach 10-40 cm. The 
relative errors of empirical and theoretical models are of the 
order of 10%. Large residual errors in modeling can cause 
significant errors in high-precision GPS positioning 
applications. These variations can generate relative and 
absolute tropospheric errors. The error in the estimation of 
tropospheric corrections for one station with respect to 
another in a network can cause relative tropospheric errors. 
As a result, these errors are mostly propagated into a 
station’s height error. To reduce or minimize these errors 
arising from poor modeling of the wet troposphere, one 
possibility is to model the tropospheric refraction using a 
purely independent data set without GPS observations. The 
other approach is to estimate the tropospheric parameters 
directly using the available GPS data. 
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As described previously, the ZWD using GPS data can be 
calculated from the relationship, ZWD = ZTD – ZHD, 
where ZTD represents the zenith total delay. The total delay 
can be estimated from GPS data. The hydrostatic 
component can be determined when the surface pressure, 
height, and latitude are known using the Saastamoinen 
hydrostatic delay model [Saastamoinen, 1972]. Eq. (8) can 
be rewritten using the mean gravity acceleration as: 
 

1 1 1
1 .o

d d d
d m

R dpN k k R k R
M g dH
ρ

ρ= = = −   (12) 

 
Substituted Eq.(12) to the Eq. (10) gives 

6

6 6
1 1

10

110 10 .

s

s

d
H

o
d d

m mp

ZHD N dH

p
k R dp k R

g g

∞
−

∞
− −

=

= − = −

∫

∫
  (13) 

 
where mg is the weighted mean gravity acceleration. The 
weighted mean gravitational acceleration at the center of 
mass of the vertical atmospheric column directly above the 
station can be approximated by the Saastamoinen equation 
[Davis et al., 1985] as: 
 

9.784 (1 0.00266 cos 2 0.00028 )
9.784 ( , ),

mg H
f H

ϕ
ϕ

= ⋅ − −

= ⋅
          (14) 

 
where ϕ  and H (km) are the latitude and height of the 
station, respectively. Therefore, the ZHD becomes: 
 

0.0022767
.

1 0.00266 cos 2 0.00028
op

ZHD
Hϕ

=
− −

   (15) 

 
The troposphere can be expanded to further distinguish 
between the azimuthally symmetric delay and asymmetric 
parts [Schuler, 2001]. The asymmetric components can be 
determined using a horizontal tropospheric gradient model. 
One way to deal with this is a ‘tilting’ technique [Rothather 
et al., 1997; Meindl et al., 2004]. Since the direction of the 
tropospheric zenith may not be the same as that of the 
geometrical or ellipsoidal zenith, the tropospheric zenith 
angle is introduced as a parameter of the mapping functions. 
Then, the tropospheric delay can finally be given as:  
 

, , , ( ) ( )

cos( ) sin( ),

i h i
trop k trop ini k ini k k k

n i e i
k k k k

f z f z

f f
z z

δρ δρ δρ

δρ α δρ α

= +

∂ ∂
+ +

∂ ∂

      (16) 

 
where: 

, :i i
k kzα  azimuth angle and zenith distance of the satellite, 

h
kδρ : zenith delay parameter, 
n
kδρ : gradient parameter in North-South direction, 
e
kδρ : gradient parameter in East-West direction, 

f : mapping function. 
 
In Eq. (16), the third and fourth terms are the troposphere 
gradient parameters in north-south and east-west direction. 
So, these parameters are estimated together with the 
residual tropospheric delays in this study. Once the ZWD is 
estimated, the PW (precipitable water vapor) can be 
calculated using Schuler [2001]: 
 

( )o

,
1708.08 K

0.10200
m

ZWDQ
PW T

= = +          (17) 

( ) ( )o o
0 ,70.29 K 0.72 KmT T= +      (18) 

where 
:mT mean temperature of the atmosphere degrees in Kelvin, 

0 :T surface temperature degrees in Kelvin. 
 
In order to retrieve the PW, the mean temperature is 
necessary. We used the empirical values of Bevis et al. 
[1992] in Eq. (18) as the mean value for the region was not 
available for analysis. Mendes et al. [2000] also evaluated 
the weighted mean temperature for the global application. 
 
The derived PW is then compared with that of the observed 
radiosonde. Even if the radiosonde has a poor horizontal 
resolution compared to the water vapor radiometer in a 
clear sky, it still provides good vertical atmospheric 
reference parameters during severe weather conditions. The 
total amount of the PW can be defined by integral 
of ( )v z dzρ , where vρ  is the mass density of the water 
vapor at altitude z . 
 
 
DATA DESCRIPTION & PROCESSING STRATEGY 
 
To evaluate the potential improvement of positioning 
performance by including the residual tropospheric delays 
and gradients as parameters in data processing, we analyzed 
a severe weather event. Figure 1 illustrates a typhoon, 
RUSA, passing over the South Korea peninsular in summer 
2002. The typhoon was one of the worst in Korean history 
as it took 184 lives and destroyed 9900 buildings with 
resulting damage estimated at a value at C$ 6.8 billion. The 
image in figure 1 is a GMS infrared satellite image. The 
data sets taken from 18 different permanent GPS stations in 
Korea from August 25 to September 3 are extensively 
analyzed for evaluating the positioning impact from the 
imbalanced network errors. The processing is based on 
double differences. To get the best possible absolute ZTDs, 
and to decorrelate the zenith delay and height component, 
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one distant stations, TSKB in Japan, is incorporated into the 
data analysis. 
 

 
Figure 1. Infrared image taken by GMS at 18 UTC on 28 
August 2002 [KMA, 2002]. 
 

 
Figure 2. The track of the typhoon, RUSA, and the stations 
involved in the research. 

 
Figure 2 illustrates the detailed track of the typhoon and 
approximate station coordinates used in this research. The 

time of the track is referenced to UTC. All of the data from 
the 18 GPS stations illustrated are extensively processed. 
Green dots in Figure 2 represent the sites for radiosondes 
which are processed for evaluating the calculated PW 
validation. The station coordinates are presented in Table 1. 
 

Table 1. Station coordinates involved. 
ID Lat.(deg.) Long.(deg.) Hgt(m) 

KANR 37.7667 128.867 57.0531 
MKPO 34.8167 126.367 64.4074 
SBAO 36.9333 128.45 1369.34 
SKCH 38.25 128.55 46.0738 
SEOS 36.7667 126.483 52.2683 
SKMA 37.4833 126.917 61.7199 
CHJU 33.5 126.517 50.3485 
CNJU 36.6167 127.45 93.5029 
DAEJ 36.3833 127.367 116.848 
JEJU 33.2833 126.45 430.226 
JINJ 35.1667 128.033 122.013 
JUNJ 35.8333 127.133 77.1584 
SNJU 36.3667 128.133 111.587 
SOUL 37.6167 127.067 59.1093 
SUWN 37.2667 127.05 83.8157 
TEGN 35.9 128.8 106.386 
WNJU 37.3333 127.933 180.215 
WULJ 36.9833 129.4 80.7422 

 

 
Figure 3. Composite reflectivity (dBZ) at 06:00 hrs on 
August 31, 2002 UTC [Tachikawa et al., 2003]. 
 
In addition to the GMS image, radar observations are 
included from Cheju (DWSR90C), Backryung, Dong-Hae 
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(DWSR90), Jindo, Kunsan (DWSR90C), Mt. Kwana 
(DWSR -8) and Pusan (DWSR90C) as shown in Figure 3. 
This figure shows the reflectivity composite image at 15.00 
hrs on August 31, 2002 local time [Tachikawa et al., 2003]. 
All of the data sets are recorded based on Trimble’s SSI 
GPS receivers with a data rate of 30 seconds.  
 
For processing the GPS data, Bernese software was used. 
Once all of the station networks were formed and cycle 
slips were correctly detected and repaired, the L1 and L2 
ambiguities were resolved using a stochastic ionosphere 
approach (namely, the quasi-ionosphere approach). After all 
possible ambiguities were resolved, these ambiguities were 
fixed to get the final positioning solutions. Subsequently, 
troposphere parameters were estimated.  To evaluate and try 
to mitigate the imbalanced network error, a gradient model 
described earlier was set up as an additional parameter in 
the processing. During Bernese data processing, IGS final 
SP3 orbit products were used. The tropospheric estimation 
described earlier with elevation-dependent weighting was 
also used in the processing. 
 
 
RESULTS 
 
For the processing, the recorded pressure, temperature, and 
radiosonde data from the Korea Meteorological 
Administration (KMA) were used. Figure 4 represents the 
pressure curve recorded. 
 

 
Figure 4. Pressure profiles when the typhoon was crossing 
the nation. 

 
Based on the above pressure curve, the typhoon was 
crossing the nation during August 31st and September 1st. 
From Figure 2, the track across Korea was from the south to 
the north. During the same period of time, torrential rain 
occurred. 
 

 
 

Figure 5. Zenith total, hydrostatic and wet delays at station 
DAEJ. 
 
Figure 5 represents one example of the estimated ZTD 
using GPS data, and the ZHD based on the Saastamoinen 
model using surface pressure; this is for station DAEJ. The 
red dashed line is the time when the typhoon passed. The 
ZTD can be estimated from the GPS data and then 
subtracted from the ZHD to get the lower plot, the ZWD. 
The lower plot in Figure 5 clearly illustrates that the wet 
delay component has a peak value when the typhoon is 
nearby. 
 
Tropospheric PW and Gradient Estimation 
 

 
Figure 6. The zenith total, hydrostatic, and wet delays at 
station JEJU. 
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Figure 7. PW from GPS and radisonde, real precipitation, 
and pressure profile during the passage of a typhoon, RUSA, 
in summer 2002 at station JEJU. 
 
Figure 6 is a sample plot of the estimated PW by GPS and 
radiosondes over 9 days. The pink bar is the actual 
precipitation water amount per hour recorded by the 
meteorological centre during that time. The bottom panel 
shows the pressure in hPa. As seen in the plots, both PW 
and the precipitation show strong correlation with the 
pressure. As most of the radiosonde stations are not at 
exactly the same location as the GPS station, differences 
can be seen. The height difference for radiosonde and GPS 
in this case is around 350 m and so the corresponding 
pressure and temperature need to be corrected. In this case, 
an exponential decay function for pressure and constant 
lapse rate for temperature for the atmosphere are applied for 
minimizing the height differences. After corrected, as is 
expected, those three values generally agree well. 
 

 
Figure 8. Horizontal gradients estimated for station JEJU. 

As described earlier, the atmosphere is extremely 
inhomogeneous when the typhoon is close. We hourly 
estimated the gradient for the period from August 25th to 
September 2nd during the GPS processing and Figure 8 
expresses those estimated total gradients. Black dots and 
red triangles represent the estimated gradient values. 
Specifically, the red triangles are the estimated gradients 
from August 31 to September 1 during the passage of the 
typhoon. As is shown, the red triangles are slightly biased 
in the south eastern direction which agrees with the location 
of the typhoon from the satellite image. 
 
 

 
 
 

 
Figure 9. PW from GPS and radisonde, real precipitation, 
pressure profile (upper plot), and horizontal gradients 
estimated for DAEJ station (lower plot) during the passage 
of a typhoon, RUSA, in summer 2002. 
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Figure 9 represents the PW from GPS and radiosonde 
measurements, and the pressure profile for station DAEJ, 
near central part of the nation. The two PW values generally 
agree, but there are some differences. We believe that the 
difference is due to a difference in the location of the GPS 
receiver and radiosonde.  
 

 
 

 
 
Figure 10. PW from GPS and radisonde, real precipitation, 
pressure profile (upper plot), and horizontal gradients 
(lower plot) for station SKCH. 
 
Figure 10 shows the estimated PW values for station SKCH. 
This area was the one of the heaviest rainfall areas during 
the day. It can be validated based on the actual precipitation 
and the satellite image. The observed PW is high before and 
during the passage of the typhoon, and then decreases 
rapidly right after its passage. During the passage of the 
typhoon, some of the GPS and radiosonde data were 
missing and they are indicated by gaps in the plot. The red 

dashed line represents when the typhoon was close to the 
station; the estimated gradients are in the direction of N-W 
quadrant. These estimated gradients are also highly 
correlated with time with the weather image recorded. 
 
 
Coordinate Differences with / without Horizontal 
Gradient Estimates. 
 

 
 
Figure 11. Coordinate differences for station DAEJ in north, 
east and height components. In each component, the upper 
plot is the coordinate delta without gradient estimates, and 
the low plot is that with the gradients. 
 
By introducing the residual tropospheric delays and 
gradients as parameters in data processing, the daily 
repeatibilities of the coordinate solution are improved. This 
can be important when a local or regional anomaly exists. 
In this case, the theoretical or empirical tropospheric 
mitigation technique can be marginally efficient. The top 
panel of each coordinate component in Figure 11 shows the 
solutions estimated without horizontal gradients while the 
bottom panel shows the solutions using gradient estimates 
in the processing. As illustrated in the above figure, an 
improvement can be seen in each component. Noticeable is 
that the improvement of the height component was higher 
in terms of absolute value, than that of the horizontal 
component as the troposphere is correlated more with the 
height component. Please note that the y-scale is different 
in the height component. 
 
Considering gradients in the processing is more important 
when the local troposphere is extremely inhomogeneous. 
Station SKCH experienced one of the heaviest downpours 
during the passage. 
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Figure 12. Coordinate differences for station SKCH in north, 
east and height component.  
 
The coordinate improvement can be seen in Figure 12 and 
is higher than any other stations. Introducing the gradients 
can greatly improve the positioning solution when severe 
tropospheric events happen. Figure 12 shows the coordinate 
differences between the fixed coordinates which are from 
the combined solutions for a few months and the estimated 
solutions for each station. The positioning improvement in 
terms of RMS reaches 34% in the north, 72% in the east, 
and 55% in the height component. We found that the 
gradient estimation has a significant contribution on the 
stability of the internal precision of the coordinate solutions.  
 

 

 
 
Figure 13. Coordinate differences for stations SKMA and 
SOUL in north, east and height components. 
 
For short baselines with little height difference, the 
troposphere is usually strongly correlated at each receiver 
so that there is little benefit in using a sample tropospheric 
model. However, when a weather front is approaching, or a 
sudden atmospheric anomaly case occurs, this is no longer 
valid. In this case, introducing a more sophisticated 
mitigation model must be necessary. An example is 
included in Figure 13. The baseline length for SKMA and 
SOUL is around 20 km which can be regarded as short to 
medium range. The upper plot on each component in Figure 
13 shows almost the same pattern for both stations before 
introducing the gradient parameter. After introducing the 
gradients (which provide more realistic models in this case) 
these two patterns are totally different while improving the 
coordinate solution. 
 
Table 2 summarizes the improvement of all involved 
stations before and after the gradient estimation. Almost all 
of the stations present consistent improvement in the 
positioning solution. Even if we have a redundancy issue on 
adding additional parameters (especially in GPS RTK 
positioning), we conclude that the inclusion of the gradients 
is important for the short baseline case especially when 
there is strong imbalanced atmospheric network errors. The 
improvement could be more dramatic when more satellites 
are available. 
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Table 2. Summary of the positioning improvement for all 18 GPS stations. 
 North(RMS, mm)  East(RMS,mm)  Height(RMS,mm)  

ID Non-
Gradient 

Gradient Improve-
ment(%) 

Non-
Gradient 

Gradient Improve-
ment(%) 

Non-
Gradient 

Gradient Improve-
ment(%) 

KANR 6.0 3.9 35 13.5 3.1 77 24.4 12.6 48 
MKPO 5.5 4.1 25 8.5 4.6 46 28.2 14.2 50 
SBAO 6.5 4.4 32 12.5 4.2 66 31.0 16.1 48 
SKCH 7.1 4.7 34 16.9 4.8 72 32.9 14.7 55 
SEOS 7.1 4.7 34 17.1 4.9 71 28.8 18.7 35 
SKMA 5.1 4.4 14 15.6 7.7 51 29.0 16.0 45 
CHJU 4.7 2.2 53 9.5 3.8 60 26.0 20.0 23 
CNJU 5.2 4.5 13 8.6 3.9 55 26.7 18.0 33 
DAEJ 5.9 4.1 31 3.8 3.9 -3 27.2 18.1 33 
JEJU 4.1 3.7 10 9.1 3.7 59 18.8 17.3 8 
JINJ 4.1 3.9 5 8.4 3.9 54 22.7 16.7 26 
JUNJ 5.6 4.5 20 7.2 3.9 46 30.7 17.6 43 
SNJU 5.5 4.5 18 13.5 6.8 50 27.2 15.6 43 
SOUL 3.6 5.2 -44 16.0 8.4 48 28.9 18.1 37 
SUWN 5.2 4.5 13 16.8 7.6 55 22.2 17.0 23 
TEGN 5.5 3.3 40 14.2 5.9 58 28.0 16.5 41 
WNJU 5.1 3.4 33 16.0 5.6 65 21.9 15.2 31 
WULJ 5.5 4.6 16 13.4 5.0 63 30.3 23.9 21 

 
 
CONCLUSIONS 
 
In this paper, we demonstrated the positioning impacts from 
imbalanced atmospheric errors on a network. For this 
purpose, an extensive test was performed when typhoon 
RUSA crossed the Korea peninsula from 25 August to 3 
September 2002. We analyzed 18 GPS stations and 
estimated the corresponding ZTDs including gradients 
using Bernese software. Then, they were transformed to the 
ZWD using the pressure and temperature values recorded 
by the Korea Meteorological Administration at each station. 
These retrieved ZWDs were then used to derive the PW 
values in order to examine those retrieved precipitable 
water values, and determine whether or not the patterns 
agreed well with those from radiosondes and actual 
recorded precipitation. From the result, the retrieved 
signature shows an expected trend that is correlated with the 
estimated ZWDs. Also, the estimated PW values from GPS 
and radiosondes generally agree and show the correlation 
with the actual precipitation recorded by the Korea 
Meteorological Administration.  
 
For the purpose of investigating the possible positioning 
improvement under severe imbalanced atmospheric 
conditions, gradients were incorporated into the processing. 
In a small network with normal tropospheric conditions, the 
additional estimation of tropospheric parameter may make 
the positioning solution unstable. This is because the 
introduction of another parameter in the estimation process 
may weaken the solution even though it is beneficial in 
reducing a certain type of bias or error. However, a realistic 

estimation of a ‘correct’ parameter is much more important 
especially whenever it is almost impossible to interpret or 
mitigate the errors based on the theoretical and empirical 
models. We investigated the possible positioning 
improvements after introducing additional parameters in the 
processing during inhomogeneous atmospheric conditions. 
When not under the normal tropospheric conditions, the 
additional gradient estimation can greatly reduce the 
instability of a coordinate solution. Based on this research, 
we also conclude that this gradient estimation could be 
more important for a station which experiences 
inhomogenity in the troposphere. 
 
 
FUTURE WORK 
  
As the troposphere is a limiting factor for high precision 
positioning, an extensive analysis of the imbalanced 
anomaly cases is necessary. Unfortunately, it is almost 
impossible to record such data sets due to the logistics. As a 
result, a series of imbalanced tropospheric phenomenon on 
a network is limited and difficult to obtain from real 
networks. In this case, a simulation would be preferable for 
extensive analysis of those impacts. This simulation can be 
possible after performing quantitative analysis of all 
possible errors through real observables. With the errors 
estimated for each station involved, for example, Spirent 
STR4760 L1/L2/L2C hardware simulators can be used for 
generating artificial observables to further analyze the GPS 
positioning errors due to the imbalanced network errors. 
Simulations can be included in the user-generated 
troposphere, ionosphere, multipath, receiver’s antenna 
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attenuation patterns and satellite’s antenna attenuation 
patterns etc. These parameters have been estimated or 
modeled during this research. Therefore, once the relevant 
simulation data is generated based on them, further 
investigation to mitigate those errors can be performed. 
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