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ABSTRACT  
 
The determination of velocity and acceleration from GPS 
measurements is very important for many dynamic 
applications, but also for airborne gravimetry and 
geophysics, as long as we can achieve the specific 
accuracy and resolution for each application. The use of 
GPS receivers rather than speedometers and/or 

accelerometers, is a very attractive option, since they can 
be more cost-effective, easier to operate and maintain and 
also they can provide a long-term stable reference. 
 
The estimation of velocity and acceleration from discrete-
time signals in GPS is based on the differentiation of the 
carrier-phase measurements or the receiver-generated 
Doppler measurements.  As with velocity estimation, it is 
preferable to generate the acceleration measurements 
from the differentiation of the carrier-phase rather than 
from the instantaneous Doppler measurement (which is 
noisier), where for the velocity we obtain range rates and 
for the acceleration we obtain range accelerations. 
 
The optimal design of a differentiator is the key point for 
accurate velocity and acceleration estimation from the 
carrier-phase measurements, which should be a 
compromise between the noise level reduction, thus the 
accuracy that can be achievable, but also the spectral 
resolution of the differentiated signal (bandwidth), 
because the differentiation method may alias the platform 
dynamics information contained in the resulting signal. 
Since this choice depends on the particular platform 
dynamics, we have investigated different test scenarios 
and platforms in real-time environments. 
 
To estimate user velocities and accelerations in the range 
domain, first we need to calculate the satellite velocities 
and accelerations, where in real time they can be obtained 
from the broadcast ephemerides with an analytical 
differentiation of the position parameter equations. The 
applicability and accuracy of this method usually is not 
mentioned in publications, since in most cases a post-
processing scheme is a preferred approach using precise 
ephemerides and DGPS precise positions. In this work, 
we evaluated the effect of the prediction of satellite 
velocities and accelerations from broadcast ephemerides 
in determining the user acceleration, but also we 
developed an error budget for the estimation of velocity 
and acceleration using a single, autonomous GPS receiver 
navigating in real time. 
 
 



INTRODUCTION  
 
Until very recently, GNSS user accelerations were 
derived from precise DGPS positions. This approach is 
accordingly called the position method. However, this 
method requires excellent and continuous positioning 
accuracies, which may not be achievable under 
operational conditions [Kennedy, 2002].  
 
Previous work on deriving accelerations from carrier-
phase measurements was carried out by Kleusberg et al. 
[1990], Peyton [1990] and Jekeli [1994], though these 
results only referred to static results in the acceleration 
domain. Jekeli and Garcia [1997] continued the work in 
this field and presented results of kinematic accelerations. 
Kennedy [2002] presented the most extensive and 
promising results for kinematic acceleration, but in the 
gravity domain, which required very precise kinematic 
acceleration estimates using post-processing schemes and 
between-receiver differencing. This paper might be 
considered an extension of this recent work, since we 
were interested in creating software for evaluating the 
accuracy of kinematic velocities and accelerations derived 
from the carrier-phase, though using a stand-alone GPS 
receiver.  
 
The novelty of this work lies in the fact that we use 
broadcast ephemerides to calculate the satellite velocities 
and accelerations (the main contributions to the error 
budget), and a stand-alone GPS receiver 
 
One of the main advantages of our method is that user 
positioning accuracy can be relaxed to the order of meters 
(~10m), which is normally achievable for real-time point-
positioning purposes. Thus, motivated by preliminary 
results coming from this real-time dynamic information, 
i.e. kinematic velocities and accelerations derived from 
the carrier-phase method, we wanted to determine if it is 
possible to improve the real-time position estimates, using 
an extended Kalman filter (EKF), integrating the 
kinematic velocities and accelerations in a loosely 
coupled Kalman filter. 
 
This method to derive accelerations from GNSS 
measurements is very interesting because the 
accelerations are already in the navigation frame, thus we 
do not need sensors like gyroscopes to convert them from 
the body frame to the navigation frame. The trade-off is 
that the acceleration components have a latency of one 
sample interval from the velocities and two from the 
positions, due to the process of differentiation, though in 
ultra-performance navigation using up to a 50 Hz data 
rate, this drawback is eliminated. 
 
Thus, the purpose of this paper is to describe our 
technique for obtaining real-time precise position, 
velocity and acceleration solutions using a stand-alone 

GPS receiver (Fig. 1), which makes it a very attractive 
option in many applications, due to many reasons such as 
simplicity, low maintenance and hence, cost-
effectiveness. Furthermore, the velocity and acceleration 
algorithms described in the following sections can be 
implemented on different platforms, coupled with 
different GNSS or INS sensors as necessary.  
 
 

 
 
Figure 1: Platform for the kinematic test. 
 
 
KINEMATIC VELOCITY AND ACCELERATION 
 
Previous studies on GPS velocity determination show that 
it is possible to achieve accuracies of a few millimetres 
per second depending on receiver quality, whether in 
static or kinematic mode, stand-alone or relative mode, 
and the particular dynamics situation [Van Graas and 
Soloviev, 2003; Ryan et al., 1997]. 
 
The velocity of the receiver mounted on a moving 
platform can be determined by using carrier-phase-
derived Doppler measurements or receiver-generated 
Doppler measurements. 
 
A receiver-generated Doppler measurement is a measure 
of near instantaneous velocity, whereas the carrier-phase-
derived Doppler is a measure of mean velocity between 
observation epochs. The direct Doppler measurement is 
noisier than carrier-phase-derived Doppler because it is 
determined over a very small time interval. As carrier-
phase-derived Doppler is computed over a longer time 
span, the random noise is averaged and lowered. 
Therefore, very smooth velocity is obtained by carrier-



phase-derived Doppler observation if there are no 
undetected cycle slips. 
 
The carrier-phase-derived Doppler can be obtained by 
either differencing carrier-phase observations in the time 
domain, normalizing them with the time interval of the 
differenced observations or by fitting a curve to 
successive phase measurements (delta-ranges), using 
polynomials of various orders. 
 
Extending this differencing approach in the measurement 
domain, it is also possible to estimate GPS based-
kinematic accelerations, determined by differentiating 
range rates with respect to time to determine line of sight 
range accelerations. Actually, one is differentiating twice 
in succession the raw carrier-phase measurements, to 
obtain the range accelerations. 
 
 
DIFFERENTIATORS (FIR FILTER) 
 
The ideal digital differentiator can be written in the 
following form: 
 

( ) ωω jeH Tj =  for 
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where H is the differentiator,ω is the frequency, sω is the 
sampling frequency and T is the corresponding sampling 
period. To differentiate a discrete time signal, such as 
GPS data, one can use a discrete time convolution, or in 
other words, the differentiator can be considered as a non-
recursive or finite impulse response (FIR) filter. 
Practically, a FIR differentiator can be applied to a 
discrete data set, such as the L1 carrier-phase time 
series ( )tΦ , using a convolution as follows: 
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where ( )tΦ  is the derivative of the input signal ( )tΦ  at 
time t, and h is the impulse response with order (N-1). 
Used sequentially, this filter will create a time series of 
the carrier-phase ( )tΦ . Applying the same convolution 
again, one obtains the range accelerations: 
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Theoretically, the relationship between the impulse 
response h and the ideal digital differentiator is given by: 
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then, the design of a digital differentiator depends on the 
choice of the impulse response h and the order of the 
filter which is related to the length of the window. Ideally, 
the order should be chosen in a way that the filter 
frequency response should respect Eq. (1). On the other 
hand, when one is interested in generating range rates and 
range accelerations in real time, the obvious choices are 
low-order filters. 
 
In our work, the choice was a first order filter, the central 
difference approximation (first order Taylor series). This 
filter has the following impulse response: 
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which will result in the following differentiator for the 
carrier-phase rate: 
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and for the carrier-phase range acceleration: 
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The use of the first order central difference approximation 
of the carrier-phase rate to generate the Doppler 
observations, as was demonstrated by Szarmes et al. 
[1997] is easy to implement and provides the most 
appropriate velocity estimates in low dynamics 
environments. The same approach can be extended for the 
accelerations. 
 
The trade-off is that the approximation cannot reflect 
quite well the receiver dynamics in kinematic situations 
with unknown dynamics. The first order central difference 
approximation is a linear prediction of the Doppler shift, 
which corresponds to a band-pass filter with cut-off 
frequencies at 0.125 and 0.375 Hz, using 1Hz sampling 
( st 1=∆ ). The cut-off frequency of the filter is 
determined at the frequency where the amplitude reaches 
around 70% (i.e.,1/ 2 ) of the maximum amplitude.  



0   0.1 0.2 0.3 0.4 0.5 
0  

0.2

0.4

0.6

0.8

1  
Frequency Response

Frequency [Hz]

M
ag

n
it

u
d

e

4th−order Butterworth Filter
Cut−off Frequency [0.125, 0.375]

Differentiator: y(n)=1/2*(x(n+1)−x(n−1)) 
Cut−off Frequency [0.125, 0.375]

 
 
Figure 2: Frequency response of the filter to the amplitude 
at a 1 Hz sampling rate. The fourth-order Butterworth 
filter with cut-off frequencies at 0.125 and 0.375 Hz is 
also plotted in the figure as an example of the 
conventional, but more complex, band-pass filters which 
have more or less similar frequency responses. 
 
As is illustrated in Figure 2, the filter of the first order 
central difference approximation stops the signals at 0 and 
0.5 Hz (i.e., Nyquist frequency) for data with 1Hz 
sampling. At a half of the Nyquist frequency (0.25 Hz), 
this filter passes the signals without attenuation. 
Therefore, this filter can perfectly remove constant biases 
in the signals. However, this filter will reduce the 
amplitudes of the signals over all frequency components 
except for a half of the Nyquist frequency. As we carried 
out the kinematic test at a 1 Hz data rate, the higher-order 
effects (e.g., all frequency components higher than the 
Nyquist frequency, 0.5 Hz) of the receiver dynamics will 
be aliased in the approximation of the carrier phase 
[Ifeachor and Jervis, 1993].  
 
The first step of our approach is to compute the satellite 
velocities and accelerations in real time, i.e. from the 
broadcast ephemeris. Until now, it is not very common to 
see works on this subject, probably because when one 
wants acceleration information in real time it is easier to 
get very precise values (in a short term) from 
accelerometers, or for other applications, a post-
processing procedure using precise ephemerides is 
adopted. However, proving that satellite velocities and 
accelerations can be estimated at the order of mm/s and 
mm/s2 respectively, using broadcast ephemerides, it is 
reasonable to assume that one can also estimate in real 
time user velocities and accelerations with the same order 
of accuracy, if the other error sources are properly 
modeled. The proof comes from solid concepts on 
satellite dynamics, and the close relationship between the 
satellite orbital broadcast parameters and their derivatives 

in time to obtain not only satellite velocities and 
acceleration in the orbital plane but also in the Earth-
Centred-Earth-Fixed (ECEF) reference frame. The next 
figures and explanations come from Kennedy [2002] and 
are very well detailed and explained in that paper. 
 

 
 
Figure 3: Line-of-sight relative geometry between satellite 
and user. 
 

s
u

s
u

s
u rhx =          (8) 

 
- s

ux  is the relative position vector between the user u and 
the satellite s.  
 
- s

ur  is the geometric range between the user u and the 
satellite s. 
 
- s

uh  is the unit direction vector between the user u and 
the satellite s. 
 
A more useful way of seeing Eq. (8) is putting it in order 
to the geometric distance: 
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where differentiating, one obtains the geometric range 
rate: 
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and differentiating two times, one obtain the geometric 
range acceleration between the user u and the satellite s: 
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where the first part of Eq. (11) refers to the line-of-sight 
relative acceleration (which contains the unknown user 
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acceleration vector), and the second part can be seen as a 
correction due to the centrifugal acceleration, thus it is a 
nuisance parameter [Jekeli and Garcia, 1997]. This is 
illustrated in Fig. 4: 
 
 

 
Figure 4: Mechanics of satellite acceleration. 
 
The two quantities, s

ur  and s
ur , are respectively the true 

geometric range rate and range acceleration, which can be 
approximated by the difference in time of the carrier-
phase, as explained before. 
 
The satellite velocities are obtained through an analytical 
differentiation in time of the ECEF parameter equations 
(ICD-GPS-200C): 
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and accelerations: 
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where the ECEF satellite coordinates are: 
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where kx′  and ky′  are the orbital plane coordinates, ki  is 
the orbit inclination and kΩ  is the corrected longitude of 
ascending node. Alternatively, we can convert the orbital 
plane coordinates to ECEF coordinates by doubly 
differentiating the expression: 
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where R is given by: 
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to yield: 
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and both methods give identical results. 
 
After the derivation of the satellite velocities and 
accelerations from the broadcast ephemeris, one can 
validate them by comparing them with those derived from 
an NGA (National Geospatial-Intelligence Agency) SP3 
file, which contains precise positions and velocities. This 
can be done using a 9th order Lagrange interpolating 
polynomial to generate solutions with the rate that best 
fits our purposes, where n is the polynomial degree: 
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and the resulting polynomial: 
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As for the satellite accelerations, since the SP3 file does 
not contain them, it is easier to use the interpolated 
velocities and obtain them through numerical 
differentiation. Our choice was again a first order central 
difference approximation using a Taylor’s expansion:  
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Figure 5: Proof that the satellite velocity and acceleration 
predicted by using the broadcast ephemeris in the 
navigation message is sufficiently accurate by comparison 
to the velocity and derived acceleration of SP3 precise 
ephemeris. 
 
Before giving the mathematics behind the observables, it 
is important to understand that although the position 
solutions are relaxed in the carrier-phase method, their 
precise determination is nonetheless important to the 
precise determination of velocity and acceleration. 
Positioning accuracy of at least 10m is required for the 
errors caused by the wrong coordinates to be negligible 
[Itani et al. 2000].  
 
At this point, one is ready to see the relationship between 
the true geometric range-rate s

ur  and the range-rate 

derived from the carrier-phase differentiation in time s
uΦ . 

The relationship can be extended for the geometric range 
acceleration s

ur  and the derived range acceleration s
uΦ . 

 
Eq. (20) shows the observation equation for the velocity 
determination. 
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where s
ur  stands for the geometric range rate between the 

receiver u and satellite s; uB  for the receiver clock drift; 
sb  for the satellite clock drift; s

uI  for the ionospheric 

delay rate; s
uT  for the tropospheric delay rate, sVδ  the 

error in satellite velocity derivation and ξ  for the receiver 
system noise.  

Similarly, the equation for the range acceleration is: 
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with all the modeled quantities in the equation behaving 
as second order errors (for instance, uB  is the receiver 

clock drift rate) and sAδ  is the error in the satellite 
acceleration calculation. 
 
Since we use the pseudorange measurements for the 
position solutions and the carrier-phase for deriving range 
rates and range accelerations, we can model out some of 
the errors in the raw observations. They are the errors in 
satellite clock, propagation effects in the ionosphere and 
troposphere, and receiver system noise, which can be 
summarised as in Eqs. (22), though at this point they refer 
already to the first and second order (rate) effects: 
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The effects of satellite clock bias and drift were modeled 
out using the coefficients in the navigation message [ICD-
GPS-200, 1999]. The relativistic effect and group delay 
differential are also accounted for using appropriate 
algorithms with values given in the navigation message. 
To reduce the effect of the tropospheric delay in the 
measurements, we use the UNB3 tropospheric prediction 
model [Collins and Langley, 1997], which is based on the 
zenith delay algorithms of Saastamoinen [1973], the 
mapping functions of Niell [1996], and a table of sea-
level atmospheric values derived from the U.S. 1966 
Standard Atmosphere Supplements, and lapse rates to 
scale the sea-level values to the receiver height. For 
reducing the effects of ionospheric delay, we use the 
standard (Klobuchar) model using the parameter values in 
the navigation message. Since we use the time-
differenced measurements over a short time interval (that 
is, less than or equal to 2 seconds) for velocity and 
acceleration determination, the residual effects of the 
tropospheric and ionospheric delays, if any, are normally 
negligible. 
 
After modeling the measurements accordingly, the 
observation equations for velocity and acceleration are 
now given by: 
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where one can see explicitly the relation between the 
derived observations through differentiation, and those 
from Eqs. (10) and (11), sV and sA stand for the satellite 
velocity and acceleration vectors; uv and ua for the 

receiver velocity and acceleration vectors; and s
uh  

represents the directional cosine vector between the 
receiver and satellite.  
We can describe the estimates of the unknown parameters 
for both the velocity and acceleration, in the least-squares 
sense: 
 

[ ]Tuzyx Bvvv=vx   and   [ ]Tuzyx Baaa=ax  
 
The formulation of the stochastic model Q for velocity 
and acceleration determination is based on the assumption 
that the relationship between satellite elevation angle and 
system noise can be quite well modeled by an exponential 
function [Jin, 1996]. Since most of the biases and errors in 
the measurements will be cancelled in the first order 
central difference approximation of the carrier-phase rate, 
such an assumption can be easily justified.  
 
Assuming no temporal correlation in the carrier phase 
observations and no correlation among the receiver 
channels, we will have (an example just for the range rate, 
but the same reasoning can be applied for the range 
aceleration):  
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Furthermore, the variance of the first order central 
difference approximation of the carrier-phase rate was 
fitted to the exponential function as: 
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where ELEV represents the elevation angle of the satellite. 
In order to model the system noise, we need to estimate 
correctly the coefficients a0, a1 and a2 in Equation (27). 
The first two coefficients are expressed in (m/s) 2 and the 
third one is in degrees, where they can be estimated by 
means of least-squares estimation. 
 
 

TESTS PERFORMED 
 
After the implementation of the algorithms for real-time 
velocity and acceleration, we performed some practical 
tests, both static and kinematic. Obviously the real-time 
kinematic accelerations were our first goal, though we 
also wanted to evaluate the performance of the algorithms 
using a low-cost single-frequency GPS receiver with a 
patch antenna (Furuno GS-77), in a medium to high 
multipath environment (Fig. 6).  
 

 
 
Figure 6: Components of the low-cost GPS receiver used 
in the static test, in a multipath environment.  
 
The acceleration results from the static test (Fig. 7) were 
at the millimeter/s2 level, and as expected the only feature 
present is amplified noise due to the differentiation 
process, since the only dynamics involved were the 
satellite velocity and acceleration.  
 
Table 1: Static acceleration statistics. 
 

mm/s2 Mean Std Rms 
East 0.1 1.0 1.0 
North 0.6 1.3 1.4 
Up -0.8 2.4 2.5 

 
The GNSS-derived acceleration only reflects the user 
kinematic acceleration, thus the gravity acceleration is not 
present as one can see from the bottom panel in Fig. 7. 



 
 
Figure 7: Results from the static acceleration test, giving 
the east, north and up components.   
 
The residuals also show that the functional model 
performed quite well for the static test, though there is a 
remaining bias in the residuals for some satellites, 
especially those with very low elevation angle (no 
elevation cut off angle was used for the test), which 
highlights the fact that better stochastic models should be 
evaluated. 
 

 
 
Figure 8: Phase acceleration residuals from the least-
squares estimation of static acceleration. 
 
After the static test, we performed a kinematic one, using 
a NovAtel OEM4 receiver, with a pinwheel antenna GPS-
600, mounted on the top of a vehicle (Fig. 9). The data 
was collected at a 10 Hz rate, though the algorithms at 
this stage are developed for 1 Hz rate processing and so 
the data was decimated to 1Hz. 

 
 
Figure 9: Setup of a NovAtel antenna on the top of the 
vehicle, for the kinematic test.  
 
The test was performed on a highway surrounding the city 
of Fredericton and its accesses, where it is possible to use 
higher velocities, higher accelerations or decelerations, 
thus providing experience of different dynamics. We 
collected 1 hour’s data, though we chose to process 15 
minutes, where there are good RTK (real-time kinematic) 
solutions to validate the velocities and acceleration 
results. Figure 10 depicts the area covered during those 15 
minutes. 
 

 
 
Figure 10: Area covered during the kinematic test with 
RTK solutions for validation purposes.  
 
As one can see from Fig. 11, the vehicle experienced a 
range of dynamics, showing some stops, idling, 
accelerating or fast decelerating. 



 
 
Figure 11: The 3D speed and 3D acceleration under 
different dynamics during the kinematic test.   
 
The next figure shows the velocity components in the 
local level system (LLS), also known as the ENU system.  
 

 
 
Figure 12: East, north and up velocity components during 
the kinematic test. 
 
The next figure (Fig. 13) shows the acceleration 
components also in the ENU system. We can easily 
identify the different dynamics situations from both the 
velocity and acceleration figures, for instance during the 
moments when the car was stopped or when it was 
accelerating, and respective velocity and acceleration 
responses. 

 
 
Figure 13: East, north and up acceleration components 
during the kinematic test. 
 
In a static test, it is easy to validate the estimates by 
comparing the velocities and accelerations with the zero 
truth values, whereas in a kinematic test the task becomes 
more complex. In our case, the option was to use the RTK 
precise positions using the UNB RTK system, which 
gives position solutions better than 2cm at 2-sigma value 
[Kim and Langley, 2003], and derive the velocities and 
accelerations through numerical differentiation of the 
positions. Fig. 14 shows the difference between the 
“reference” velocity values coming from the RTK-derived 
velocities and those derived from the single-receiver 
measurements. Hence, for our purposes they represent the 
velocity errors in the carrier-phase differencing method. 
 

 
 
Figure 14: Difference between the RTK derived velocities 
and those derived from the carrirer-phase method. 



Table 2: Velocity statistics in the three LLS components. 
Note that 5 mm/s is approximately 0.02 km/h. 
 

mm/s Mean Std Rms 
East 0 1.8 1.8 
North 0 2.4 2.4 
Up 2.9 7.4 7.9 

 
For the acceleration, it was analyzed using exactly the 
same procedure, i.e., derive what we consider the “truth” 
accelerations from the RTK solutions and compare them 
with those derived from the carrier-phase method.  
 

 
 
Figure 15: Difference between the RTK derived 
accelerations and those derived from the carrier-phase 
method. 
 
Overall the results are at the mm/s2 level, as described in 
Table 3, which may be considered promising at this 
preliminary stage, though many other kinematic tests 
should be performed. 
 
Table 3: Acceleration statistics in the three LLS 
components. 
 

mm/s2 Mean Std Rms 
East 0 1.7 1.7 
North 0 3.1 3.1 
Up 0 8.1 8.1 

 
It is interesting to note that when the car was stopped, the 
errors are quite small and not biased, exactly as noted in 
the static test, but when the car experiences higher 
dynamics, not only is the scatter in the errors magnified 
but the results become biased, which can also be seen in 
the residuals (Fig. 16, bottom panel). 
 

 
 
Figure 16: Velocity and acceleration residuals from the 
kinematic test. 
 
This might come from the fact that as we carried out the 
kinematic test at a 1 Hz data rate, the higher-order effects 
(e.g., all frequency components higher than the Nyquist 
frequency, 0.5 Hz) of the receiver dynamics will be 
aliased in the approximation of the carrier phase [Ifeachor 
and Jervis, 1993]. Besides, the numerical differentiation 
of the RTK position solutions eliminate some errors but 
amplifies the noise in some bandwidths, thus these 
derived velocities and accelerations can not be considered 
as absolute truth. Hence, the plots in Fig. 14 and 15 may 
be giving a too pessimistic idea of the performance of the 
technique. 
 
Since these preliminary results are promising, why not 
use this important dynamic information gathered in real 
time, and fed into a Kalman filter, together with the 
pseudoranges to improve the positions in the solution 
domain? 
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Figure 17:  Relation between the navigation frame and the 
body frame, with dynamics involved. 
 
Looking at Fig. 17, one can see the advantages of having 
acceleration information already in the navigation frame, 
thus being able to augment the system and improve the 
position estimates, as in a GPS/INS system.  The 
limitation in this case is the fact that the range rates and 
range accelerations are themselves correlated in time and 
cross-correlated between them, thus it is not a good 
approach to use them as in a tightly-coupled Kalman 
filter. This can be seen in the acceleration residuals 
spectrum (Fig. 18). 
 

 
 
Figure 18: Periodogram (spectrum) of the acceleration 
residuals. 
 
Using “whitening” filters can be a good option, though 
this procedure should be used with caution since the 
transformation can change the original range rates and 
accelerations into a “white” subspace, which is not 
exactly the same as the original and may mask the 
dynamics. Another option, which we have chosen, is 
using the velocity and acceleration in the solution domain 
as if they were coming from real speedometers and 
accelerometers. This is implemented through an extended 
Kalman filter (EKF). 
 
The nonlinear dynamical model is described by: 
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The nonlinear measurement model is: 
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where the measurements are the differences between the 
observed pseudoranges and the predicted ones, the 
estimated velocities, accelerations, receiver clock drift 
and drift rate. 
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and, assuming no correlations between them, the 
covariance is given by the values derived from the overall  
precision in the study performed in the previous section. 
For the pseudoranges, reference values for the receiver 
(accuracy of single point L1 22

1 4mL ≈σ ) were used. 
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The predicted state estimate was computed as: 
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and the linear approximation equations give: 
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The next figure depicts the results, i.e., the difference 
from the Kalman filter position results (implemented with 



the velocities and accelerations coming from the carrier-
phase method) and the positions from the RTK solutions. 
Thus, it reflects the errors in this new approach for 
improving positions using GNSS-derived accelerations.  
 

 
 
Figure 19: Difference between the RTK solutions and the 
position solutions from the EKF implementation. 
 
Looking at the figure, it is very clear that the position 
estimates are improved by one order of magnitude, since a 
regular point position algorithm in real time typically 
provides 3D solutions with a precision around 10 m and, 
at best, a few metres. Here, we see an overall precision 
around 1m: 
 

mmm 95.035.023.0 === UNE σσσ  
 
In addition, the residuals show a small spread, around ± 2 
m, though they also clearly show that some residual 
constant biases remain.  
 

 
 
Figure 20: Residuals from the EKF position solutions. 
 
This is due in part, to the fact that we are only using the 
L1 pseudorange to derive the position, and though the 
atmospheric errors are modeled using the Klobuchar 
model for the ionospheric delay prediction and the UNB3 
model for the tropospheric delay prediction, residual 
errors remain. 
 
CONCLUDING REMARKS 
 
A standalone GPS receiver can be used to obtain 
horizontal velocities at the few mm/s level, and horizontal 
accelerations at the few mm/s2 level, in real-time 
kinematic scenarios. The corresponding vertical values 
are a factor of 2-3 worse. The static acceleration results 
show even better rms values, especially in the up 
component where this value is three times better (2.5 
mm/s2) than the up kinematic acceleration. Some of the 
reported “errors” could be due to the errors in the RTK 
“truth” values. 
 
The carrier-phase method to derive velocities and 
accelerations is accurate enough for many real time 
kinematic applications, and at the same time is a simple, 
easy to operate and cost-effective technique, thus 
becoming a very attractive option. 
 
Although the overall goal for this paper was not the study 
of any precise point positioning technique (PPP), it 
became clear that the input of available dynamic 
information (already in the navigation frame), i.e the 
estimated velocities and accelerations could actually 
augment the system, hence filter and improve the position 
solutions, becoming an interesting PPP technique.  
 
 



FURTHER RESEARCH 
 
Based on the concluding remarks, it is worth considering 
the implementation of higher order filters or optimal ones 
based on higher dynamics, using up to 50 Hz GPS data. 
This can circumvent two problems, which are the 
dynamics aliasing created in the differentiation process, 
and the unrealistic dynamics picture taken using only 1s 
samples (1 Hz). Besides, the use of very high GNSS data 
rates can also overcome the problem of time latency 
between the position, velocity and acceleration results.   
 
The development of higher order filters for higher 
dynamics thus requires the improvement of the functional 
model for the new dynamics, also extending the study for 
different platforms. This can be done with the aid of a 
GPS hardware simulator, easily generating GPS data in a 
myriad of different dynamics scenarios. The use of a 
precise motion table can also help to understand the 
correct velocity and acceleration frequency components 
from a specific signal, thus making easier the design of 
the filter for a specific bandwidth. On the other hand, if 
one is developing functional models for unknown or 
higher dynamics, it is also desirable to implement new 
stochastic models, such as adaptive ones, which can more 
realistically reflect the change in the measurements 
quality, affected by the change in the receiver dynamics. 
 
At this point, it is obvious that one should study the 
integration of GNSS-derived velocity and acceleration 
with those coming from inertial navigation systems. This 
can provide a way to help mitigate the predominant error 
sources in the inertial sensors, such as bias, scale factors 
or random walk. On the other hand, the outputs from the 
inertial sensors can provide the dynamic information in 
situations where the GNSS-derived velocity and 
accelerations are not available due to the blockage of the 
LOS (line-of-sight) between satellite and receiver. 
 
The improvement of the PPP technique using the GNSS-
derived velocity and acceleration should be accompanied 
with the integration of better error models. This means 
that in order to fully evaluate the inherent improvement in 
position due to the integration of GNSS derived velocity 
and acceleration, it is also necessary to carry out better 
modeling so that we can take care of all sources of errors 
and biases. 
 
 
ACKNOWLEDGMENTS 
 
The work described in this paper was supported by the 
Natural Sciences and Engineering Research Council of 
Canada. 
 
 

REFERENCES 
 
A. M. Bruton, C. L. Glennie and K. P. Schwarz (1999). 

“Differentiation for High-Precision GPS Velocity and 
Acceleration Determination.” GPS Solutions, Vol. 2, 
No. 4, pp. 4-21. 

 
Collins, J.P. and R.B. Langley (1997). “Estimating the 

Residual Tropospheric Delay for Airborne 
Differential GPS Positioning.” Proceedings of the 
10th International Technical Meeting of the Satellite 
Division of The Institute of Navigation, Kansas City, 
Missouri, 16-19 September, pp. 1197-1206. 

 
ICD-GPS-200C (1999). Navstar GPS Space 

Segment/Navigation User Interface Control 
Document, GPS Navstar JPO, 138 pp. 

 
Ifeachor, E. C. and B. W. Jervis (1993). Digital Signal 

Processing: A Practical Approach. Addison-Wesley 
Publishing Co., Workingham, England. 

 
Itani, K., T. Hayashi and M. Ueno (2000). “Low-Cost 

Wave Sensor Using Time Differential Carrier Phase 
Observations.” Proceedings of ION GPS 2000, Salt 
Lake City, Utah, 19-22 September, pp. 1467-1475. 

   
Jekeli, C. and R. Garcia (1997). “GPS Phase 

Accelerations for Moving-base Vector Gravimetry.” 
Journal of Geodesy, Vol. 71, No. 10, pp. 630-639. 

 
Jin, X. (1996). Theory of Carrier Adjusted DGPS 

Positioning Approach and Some Experimental 
Results. Delft University Press, Delft, The 
Netherlands, 162 pp. 

 
Kaplan, E.D. (Ed.) (1996). Understanding GPS, 

Principles and Applications, Artech House 
Publishers, Boston-London, 554 pp. 

 
Kennedy, S. (2002). “Precise Acceleration Determination 

from Carrier Phase Measurements.” Proceedings of 
ION GPS 2002, Portland, Oregon, 24-27 September 
2002, pp. 962-972. 

 
Kim, D. and R.B. Langley (2003). “On Ultrahigh-

Precision Positioning and Navigation.” Navigation: 
Journal of The Institute of Navigation, Vol. 50, No. 
2, Summer, pp. 103-116. 

 
Misra, P. and P. Enge (2001), Global Positioning System: 

Signals, Measurements, and Performance. Ganga-
Jamuna Press, Lincoln, Massachussets, 390 pp. 

 
Niell, A.E. (1996). “Global Mapping Functions for the 

Atmosphere Delay at Radio Wavelengths.” Journal of 



Geophysical Research, Vol. 101, No. B2, pp. 3227-
3246. 

 
Ryan, S., G. Lachapelle and M. E. Cannon (1997). 

“DGPS Kinematic Carrier Phase Signal Simulation 
Analysis in the Velocity Domain.” Proceedings of 
ION GPS 97, Kansas City, Missouri, 16-19 
September 1997, pp. 1035-1045.  

 

Serrano, L., D. Kim, and R. B. Langley (2004). “A GPS 
Velocity Sensor: How Accurate Can It Be? – A First 
Look.” Proceedings of NTM 2004, the 2004 National 
Technical Meeting of The Institute of Navigation, 
San Diego, CA, 26-28 January 2004; pp. 875-885.  

 
Szarmes, M., S. Ryan, G. Lachapelle and P. Fenton 

(1997). “DGPS High Accuracy Velocity 
Determination Using Doppler Measurements”, 
Proceedings of  KIS 97, Department of Geomatics 
Engineering, The University of Calgary, Banff, 3-6 
June 1997, pp. 167-174. 

 
Van Graas, F. and A. Soloviev (2003). “Precise Velocity 

Estimation Using a Stand-Alone GPS Receiver.” 
Proceedings of ION NTM 2003, Anaheim, 
California, 22-24 January 2003, pp. 262-271. 

 
Zhang J., K. Zhang, R. Grenfell and R. Deakin (2003). 

“Realtime GPS Orbital Velocity and Acceleration 
Determination in ECEF System.” Proceedings of 
ION GPS/GNSS 2003, Portland, Oregon, 9-12 
September 2003; pp. 1288-1296. 

 
  


