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ABSTRACT  
 
In this paper we present a new technique of regional 
modeling of TEC (Total Electron Content), using a 
Neural Network model. This new model has the 
capability to predict TEC values derived from a GPS 
tracking network. Preliminary tests and respective results 
are shown. One of the main sources of errors of GPS 
measurements is the ionosphere refraction. As a 
dispersive medium, the ionosphere allows its influence to 
be computed by using dual frequency receivers. The use 
of two frequencies allow estimating the influence of 
ionosphere on GPS signal by the computation of TEC 
values, which have a direct relationship with the 
magnitude of the delay caused by the ionosphere. In the 
case of single frequency receivers it is necessary to use 
models that tell us how large the ionospheric refraction is. 
Such is the case of which the GPS broadcast message 
carries parameters of the Klobuchar model. One other 
alternative to single frequency users is to create a regional 
model based on a network of dual frequency receivers. In 
this case, the regional behaviour of ionosphere is modeled 
in a way that it is possible to estimate the TEC values 
inside or near this region. This regional model can be 
based on polynomials, for example. We have investigated 
a Neural Network-based model to the computation of 
regional TEC. The advantage from the use of this Neural 
Network model is that with the same model we can 
predict values for a station either within or outside the 
network, due to the adaptation capability of neural 
networks training process, that is an iterative adjust of the 
synaptic weights in function of residuals, using the 
training parameters. We have used data from the 

permanent GPS tracking network in Brazil (RBMC). We 
have tested the accuracy of the new model at all stations. 
To perform the tests TEC values were computed for each 
station of the network, except for a test station. After that 
the training parameters data set for the test station was 
formed, based on the TEC values of all other stations of 
the GPS network. The Neural Network was trained with 
these parameters, and tested by computing the TEC for 
the test station. This assessment was carried out several 
times, one for each station of the network. Preliminary 
assessment of results using our new technique shows a 
capability of retrieving around 85 % of TEC values for all 
stations. This means that we can correct the ionospheric 
delay at the same amount, due the direct relationship 
between both TEC and ionospheric delay. 
 

INTRODUCTION  
 
Ionospheric refraction is one of the most damaging effects 
on GPS signal. This effect is proportional to the total 
electron content (TEC), which is the number of free 
electrons contained in the ionospheric layer. Electrons of 
atmosphere are generated due to several factors, including 
solar activity. Figure 1 shows how solar radiation can 
create electrons in the atmosphere, forming the 
ionospheric layer. 
 

 
Figure 1. Creation of an oxygen ion and a free electron. 
 
Once the TEC is known, it is possible to determine the 
delay caused by the ionosphere on GPS signal. Due to the 
dispersive characteristic of the ionosphere, the delay is a 
function of the frequency. It is possible to know the value 
of TEC using a dual frequency GPS receiver. Using the 
observations at both frequencies it is possible to compute 
the TEC value for the local where the station is. This 



  

computation will be explained in more detail in the next 
sections. 
 
One alternative for single frequency receiver users is to 
use a regional model of TEC, generated by using data 
from a tracking network of dual frequency receivers. 
There are several ways to create such model. A network 
of receivers can generate a spatially distributed grid of 
TEC values. Using this grid it can be created a model 
from which is possible to estimate a TEC value to any 
position inside or near the region covered by the tracking 
network. Once the local TEC value is estimated, it is 
possible to correct the single frequency receiver 
observations. In this paper we present a new technique to 
regional TEC modeling, using a Neural Network 
approach. This new technique has the capability to predict 
TEC values derived from a GPS tracking network. 
Preliminary tests using the new technique indicate an 
average accuracy in the TEC values estimation of 97.5 %. 
In other words we can correct the ionospheric delay by 
the same amount, due to its direct relationship with TEC. 
These preliminary tests and respective results will be 
shown later in the paper. 
 

TEC COMPUTATION USING A DUAL 
FREQUENCY RECEIVER 
 
This section deals with the first step of our technique, that 
is the computation of the Vertical TEC (VTEC), using 
dual frequency observations. This computation allows the 
determination of VTEC values for each station of the 
tracking network. The model for VTEC computation 
presented here is a simple model, because our final 
objective is not to get a great precision in the VTEC 
determination for the tracking station itself, but a good 
estimation using our regional model for void areas, which 
is the main subject of this work. These same values can be 
computed using different techniques, probably providing 
a better quality input data to the regional model. However 
it will be shown that the final results obtained using our 
approach are satisfactory. 
 
Let the equation of the carrier phase measurements on 
two frequencies (L1 and L2) be: 
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where 1λ and 2λ  are the carrier phase wavelengths, in 
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Taking the difference between (1) and (2) we get: 
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where the geometric distance, tropospheric delay and 
clock errors terms were cancelled out due their same 
behaviour in both frequencies. If there is not a cycle slip 
the ambiguity terms are constant. Let us combine the 
ambiguity terms of both frequencies into a constant, as 
follows: 
 

1
s
r12

s
r2

s
r NλNλC ⋅−⋅= ,                                                  (4) 

 
where s

rC is the combination of the ambiguity terms of the 
two frequencies. Substituting (4) into (3) we get: 
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The influence of ionosphere on GPS signals ( 1

s
rI  and 2

s
rI ) 

can be computed according to (Hoffmann-Wellenhof, 
2001): 
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where 1f  and 2f  are the frequencies of the L1 and L2 
carrier signals, in units of Hz, and TEC is the total 
electron content in 216 m10electrons −⋅⋅ . Substituting (6) 
and (7) into (5) we will obtain the following expression: 
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For simplification we assumed the TEC as a constant 
value during the period used for the computation. The 
choice of the size of such period is arbitrary, but it needs 
to be large enough to provide a good number of degrees 
of freedom in the adjustment and small enough to satisfy 
the assumption that TEC is constant over that period. In 
this work, we used periods of one hour for each 
determination of TEC. We can evaluate (8) as follows: 
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TEC is defined as being the number of free electrons 
contained in a column with one meter squared of 
transversal section, along the path of the signal through 
the ionospheric layer. It is a number associated to an 
inclined trajectory with respect to the local zenith, as a 
function of the elevation angle of the satellite. In addition 
to that, the signal goes through the ionosphere at 
coordinates different from those of the station, at the 
ionospheric piercing point. To correct for the inclination 
and the position of the piercing point we can use mapping 
functions, as follows: 
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where 
 

sin(el)
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where el is the elevation angle of the satellite at the 
observing station. Equations (11) and (12) allow us to 
determine VTEC instead of TEC. The mapping function 
used in this work is a simple bilinear model, as follows: 
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where ∆φ  is the latitude difference between the 
observation point and the ionospheric piercing point, ∆λ  
is the longitude difference between the observation point 
and the ionospheric piercing point, and 0a , 1a  and 2a  
are the coefficients of the bilinear model to be adjusted. 
Substituting (13) into (10) we will get the final expression 
for TEC computation used in this work: 
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With this expression is possible to compute the 
parameters 0a , 1a  and 2a  and to determine VTEC for 

the tracking stations using measurements of several 
satellites during a certain period of time. The parameters 
of the model are the same to any satellite, but for each 
satellite included to the adjustment we will have an 
additional term s

rC . Therefore, in this adjustment we will 
have (3 + ns) unknowns, where ns is the number of 
satellites used in the computation. The number of 
observations can be determined according to: 
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where totalno  is the total number of observations used in 
the adjustment, and no(s)  is number of tracked epochs of 
the satellite s during the period of time used to the 
computation. If a cycle slip occur during this period, it is 
necessary to add another term to determine the combined 
ambiguities, loosing one degree of freedom. Depending 
on the size of the period it may be better to ignore such 
satellite to avoid the increasing of the ambiguity terms 
quantity. 
 
The linear system formed by the several observations 
according to the equation (14) can be solved using the 
Parametric Least Squares Method. Performing this 
computation for each station of the GPS tracking network 
we will have a VTEC value associated to a coordinate 
wherever we have a station of the network. These values 
will be the input parameters of our Neural Network 
Model, which will perform the estimation of VTEC for 
any other point in or near the region covered by the 
network. The Neural Network Model will be discussed in 
the following section. 
 

THE NEURAL NETWORK MODEL 
 
A Neural Network is an information processing system 
formed by a big number of simple processing elements, 
called artificial neurons, or simply neurons. 
 

 
Figure 2. Nonlinear artificial neuron model (Adapted 
from Haykin, 1999). 
 



  

A neuron computes its input as a linear combination of its 
input signal by using the synaptic weights. The synaptic 
weights play the role of parameters, which are adjusted at 
the training process (this procedure will be discussed later 
in this section). After that an activation function is applied 
to the neuron input to generate the neuron output (in the 
case of a single neuron it is already the output signal). 
One neuron may have one or more outputs, with the same 
value. In the case of a linear activation function, the 
neuron plays the role of a regression linear model. The 
processing of a neuron k can be represented by: 
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where ky  is the neuron output, ϕ  is the activation 
function, m is the number of input parameters, ix  is the i-
th input parameter, kiw is the i-th synaptic weight and kb  
is the bias. 
 
Typically the order of normalized amplitude of a neuron 
output is within the range [0,1], or alternatively [-1,1].  
This range depends on the type of activation function 
used. The neural model also includes a term that is 
applied externally, called bias and represented by kb . 
The bias has the function of increase or decrease the 
neuron input. 
 
It is possible to introduce a functional link into the 
network as an additional layer of neurons, called a hidden 
layer. This layer can be composed of one or more neurons 
The input signal of the hidden layer neurons is generated 
by the output signal of the input layer. The output signal 
of the hidden layer is used to generate the input signal to 
the output layer. It is also possible to introduce not just 
one, but several hidden layers into the model. 
 

 
Figure 3. Neural Network Multilayer Perceptron 

 
Figure 3 shows a scheme of a neural network with one 
hidden layer. In this example x(1), x(2) and x(3) are the 
input parameters and y(t) is the output parameter. Each 
element, excepting the biases, is a neuron. Each of these 
neurons is a processing element that works according to 
equation (16). The synaptic links (the lines in the draw) 
connect the different layers, carrying the output signal of 
a previous one to generate the input signal of the next one. 
Each synaptic link of the network has a corresponding 
synaptic weight that is applied to the flowing signal that is 
going through it. 
 
Another issue of a neural network model is the number of 
neurons of each layer. This number is fixed to the input 
and output layers, in function of the input and output 
parameters. For the hidden layers this number is arbitrary. 
The model resulting from adding hidden layers between 
the input and output layers is called Multilayer Perceptron 
(MLP). The MLP is not the only type of neural network 
model, but is one of the most popular ones. In this work 
we have used a MLP. 
 
It is necessary not just to know which model will be used 
(in our case the MLP), but also all its characteristics, such 
as the number of hidden layers, the number of neurons in 
each hidden layer, the activation function of each layer, 
etc. There are others more specific characteristics that will 
not be discussed here. The characteristics of the new 
model will be presented later in this section. 
 
Once we have a model defined, it is necessary to train the 
neural network with data. Such data is composed by a set 
of know input and output parameters. The training 
process is not more than an adjustment of the synaptic 
weights to the data set. This adjustment attempts to 
decrease the residuals of the output of the network. The 
residuals are the difference between the computed output 
and the known output. Based on these residuals is 
performed an actualisation of the synaptic weights. Due to 
the complexity of neural networks the adjustment cannot 
be done with a direct computation. Therefore the so called 
training algorithms, which are a type of iterative 
adjustment of the synaptic weights, are used. One of these 
algorithms is the Backpropagation Training Algorithm, 
which is composed by two steps. The first one is the feed-
forward, when the signal is propagated through the 
network, from the input layer to the output layer. After 
that the output value is compared with the known output 
and the residuals are computed. The second step is the 
feed-backward. In this step the errors are propagated 
through the network from the output layer to the input 
layer. During the feed-backward step the synaptic weights 
are adjusted. It is made several times to each parameter up 
to the residuals converge to a desired threshold value. 
After the training process we have a Neural Network 



  

Model with adjusted synaptic weights according to the 
training parameters. 
 
The presented model was created to estimate the VTEC 
for a certain position. The input parameters of the neural 
network model are Latitude and Longitude, while the 
output parameter is the VTEC. In this way, once the 
network is trained, it is possible to get a VTEC value for 
any location. The training parameters are the known 
coordinates and VTEC values of each station of the GPS 
network at a given time. Once the model is adjusted we 
can estimate a VTEC to any position inside or near the 
region covered by the GPS network to the given time. 
 
Two hidden layers were used, each one with five neurons. 
The activation function of all layers (except the input one) 
is the hyperbolic tangent sigmoid function, represented in 
equation (17). 
 

1
e1
2)x( x2 −

+
=ϕ ⋅− ,                                                       (17) 

 
where x is the input signal of the neuron. 
 
Figure 4 shows a scheme of the neural network model 
used. The techniques to apply the model with the GPS 
tracking network data are discussed in the following 
section. 
 

 
Figure 4. The Neural Network Model. 
 

ANALYSIS STRATEGY 
 
The data used in this work was obtained from the RBMC 
(Brazilian Continuous Monitoring Network), which is a 
GPS tracking network in Brazil. Figure 5 shows the 
configuration of such network. 
 

 
Figure 5. Stations of the RBMC 
 
The advantage of using that network is due to the 
continental dimensions of Brazil, what can be considered 
one additional factor to test the capability of the model to 
estimate the TEC to long distances. Due to operational 
restrictions (not all stations are always operational) we did 
not use the whole network, but the stations BOMJ, 
BRAZ, CRAT, CUIB, IMPZ, PARA, POAL, RIOD, 
SALV, SMAR and UEPP, in a total of 11 stations. All 
stations were used either to calibrate the model or as a test 
station. 
 
For each determination the test station data was not used 
during the training process of the neural network. After 
the training process the model was used to estimate the 
VTEC value for the test station position. This value is 
then compared with the known VTEC value obtained with 
the techniques expalined in previous sections. The 
difference between them shows the error of the prediction 
of the Neural Network Model. Performing this procedure 
to each of the 11 stations we could access the eficiency of 
the model everywhere. Using this technique we could 
analise the performance of the model for predictions 
inside and at the edges of the area covered by the 
network. Figure 6 shows a flowchart of the data 
processing for each given time. 
 



  

 
Figure 6. Flowchart of the data processing. 
 
We performed these tests for two different periods of five 
days: One with low solar activity and the other with high 
solar activity. The low solar activity period covered days 
form February 1st 2004 to February 5th 2004. The high 
solar activity period covered days from October 26th 2003 
to October 30th 2003. The index used to the analysis of 
solar activity was the solar radio flux. Figure 7 shows the 
behaviour of this index, within the chosen periods. 
 

 
Figure 7. Solar radio flux. 
 
For each day tests were performed to compute VTEC at 
12, 14 and 16 hours (local time), corresponding to three 
predictions per day per station, resulting in a total of 318 
predictions. The period used for the TEC computation 
was 1 hour. Prediction results are shown in the following 
section. 
 

ANALISYS OF RESULTS 
 
Results were analysed by assuming both absolute and 
elative errors. The absolute errors can be computed 
according to: 
 

VTECVTECErrorAbsolute e −= ,                             (18) 
 

where VTEC is the computed value of VTEC, in TECU, 
and eVTEC  is the estimated value of VTEC, in TECU. 
The relative errors can be computed according to: 
 

100
VTEC
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The less the absolute and relative errors are (as given by 
equations (18) and (19)), the closer are the predicted 

eVTEC  (given by our Neural Network Model) and the 
computed VTEC (determined from dual frequency 
receivers) used as reference. 
 
Due to the direct relationship between TEC and 
ionospheric delay, according to equation (6) and (7), we 
can correct the ionospheric delay with a similar accuracy 
of the estimation of TEC. The results of VTEC 
estimations can be regarded as an estimated accuracy for 
correcting the ionospheric delay to single frequency 
receivers. 
 
In this investigation 318 estimations were made with our 
new model, involving different stations, days and time of 
the day. The average absolute error of all estimations is 
equal to 3.7 TECU with standard deviation of 2.7 TECU 
(1 sigma). The average relative error was 14.9 %, with 
standard deviation of 10.9 % (1 sigma). 
 
Figures 8 and 9 show the minimal absolute and relative 
errors for all stations, respectively. 
 

 
Figure 8. Minimal absolute errors for all stations. 
 



  

 
Figure 9. Minimal relative errors for all stations. 
 
The worse average results were obtained for station 
IMPZ. It could be expected, since this station is the 
farthest from the others. The case of station IMPZ is an 
extrapolation case. The average results obtained for this 
station are 5.5 TECU and 18 % for absolute and relative 
errors, respectively 
 
Figures 10 and 11 show the absolute and relative minimal 
errors, respectively, for all stations during the period of 
low activity. 
 

 
Figure 10. Minimal average errors during the low solar 
activity period. 
 

 
Figure 11. Relative minimal errors during the low solar 
activity period. 
 
Figures 12 and 13 show the absolute and relative minimal 
errors, respectively, for all stations during the period of 
high activity. 
 

 
Figure 12. Absolute minimal errors during the high solar 
activity period. 
 



  

 
Figure 13. Relative minimal errors during the high solar 
activity period. 
 
The absolute errors in both cases (low and high solar 
activity) were obtained in the same order of magnitude. 
Because the larger the TEC values during high activity 
periods, the smaller the relative errors in this situation 
than those obtained during the low activity period are. 
 
 
CONCLUSIONS AND FUTURE RESEARCH 
 
The model performed estimations with an average error of 
3.7 TECU with standard deviation of 2.7 TECU (1 
sigma). The average relative error was 14.9 %, with 
standard deviation of 10.9 % (1 sigma). This means that 
according to these preliminary results the new model 
allows to correct approximately 85 % of the ionospheric 
refraction to a single frequency receiver inside or outside 
the region. It can be concluded that the new model is 
adequate to predict VTEC values. The value of the 
standard deviations allow us to conclude that there was 
not great differences when comparing different stations, 
days, times or even solar activity levels. 
 
The worse absolute and relative results were obtained in 
periods of high and low solar activity, respectively. As 
said before, this is due to a lower denominator value in 
equation (19), during low solar activity period. It can be 
also concluded that there is a stability of the estimations 
in terms of absolute values, during different situation with 
respect to solar activity. Therefore the average relative 
results for the high solar activity are better than those for 
low activity. However, the absolute errors during high 
solar activity period are not so good as those for calm 
periods. 
 
Eventhought the spacing of tracking stations of the 
network used in this research is sparse, the model 
produced good estimations. With a larger number of 

stations it would be expected an even greater stability and 
confiability of the estimations of the model. 
 
The worse average results were obtained for station 
IMPZ. It could be expected, since this station is the 
farthest from the others. The case of station IMPZ is an 
extrapolation case. Since the results are not bad (average 
of 5.5 TECU and 18 % for absolute and relative errors, 
respectively) the new model is a good model to estimate 
TEC values not just inside the region covered by the 
tracking network, but also outside it. An important 
consideration is the distance between IMPZ and the 
nearest station, of the order of eight hundred kilometres. It 
shows the capability of our model to extrapolate. 
 
Future research is required to a complete validation of the 
model, assessing the efficiency of the new technique to 
different conditions of geomagnectic and solar activity. 
Comparison of the estimations of this new model with 
current models is another way to validate of technique. 
 
Since it is concluded that the technique is a good way to 
modeling regional TEC, it can be possible go ahead and 
investigate similar techniques to global TEC modelling. 
Probably it would be necessary changes in the neural 
network configuration, based on the complexity of the 
problem. 
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