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ABSTRACT  
 
A new generation of Global Positioning System (GPS) 
satellites, called Block IIR-M, has been launched since 
December of 2005. These satellites are part of the 
modernization effort that the GPS is undergoing. The 
signals transmitted by these satellites contain a new 
civilian code superimposed on the L2 carrier, called the 
L2C code. Research into the characteristics of the L2C 
code is based on an International GNSS Service (IGS) 
L2C dedicated Test Network. This network is composed 
of both existing stations as well as newly established ones 
with receivers capable of tracking the L2C signal. The 
IGS L2C Test Network is composed only of Trimble 
receivers.  
 
The University of New Brunswick (UNB), Fredericton 
Campus, Department of Geodesy and Geomatics 
Engineering (GGE), obtained a Trimble R7 and a Trimble 
NetR5 receiver on loan from Cansel, a Canadian 
distributor of Trimble products. Both receivers are 
capable of tracking the L2C code. The Trimble R7 
receiver was collocated with IGS station UNB1 (now 
station UNBJ), sharing the same antenna, and has become 
a part of the L2C signal tracking network since January 
2006. From November 2006 we have replaced the R7 
receiver by the NetR5.  
 
This paper presents results of our analysis on the L2C 
data collected by the L2C Test Network. Our 
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investigation starts with an examination of the signal-to-
noise ratio (SNR) on the L1 and L2 frequencies. The 
range of the SRN values on the L1 frequency is similar 
for all satellites, whilst the range of the SRN on the L2 
frequency for the three modernized satellites is higher 
than those for all other satellites. This indicates an 
improvement in the SNR of the L2C signal over the P(Y) 
code. It follows with a study on the multipath and noise 
levels of C/A and L2C code pseudorange for PRN 17 in 
the Trimble R7 receiver. These values were calculated 
and compared. A typical standard deviation of the C/A 
and L2C code noise and multipath is 0.27 m and 0.61 m, 
respectively. The difference between the standard 
deviations is caused by issues in the firmware versions 
2.26 and 2.28, which were used in the Trimble R7 
receiver during the observation period.  
 
Further, we have analyzed the C/A and L2C code 
multipath and noise levels based on the L2C global Test 
Network. We chose four stations (FAIC, UNAC, UNB3 
and GANP) to be used in this analysis The first two 
stations use a Trimble NetRS receiver; while the last two 
stations use a Trimble NetR5 receiver 
 
Standard deviations of multipath and noise values were 
computed over the entire 24-day period and each day 
separately for each elevation angle bin, each modernized 
satellite, each four stations and code (C/A and L2C).  
 
After examining the results from the stations using 
Trimble NetR5 receiver we realized that the standard 
deviations of the C/A and L2C codes were similar in the 
case of all modernized satellites. However, stations using 
Trimble NetRS receiver had higher standard deviations 
for the L2C code then for the C/A code. This can be also 
explained by the firmware versions used in the receivers.  
 
INTRODUCTION  
 
The United States has started an extensive modernization 
program to provide better service to Global Positioning 
System (GPS) users. This modernization program 
includes the launching of modernized GPS satellites. The 
first block of these new satellites is called Block IIR-M, 
where “R” stands for replenishment and “M” for 
modernized. In this modernization process, GPS has 
gained a new open civil signal (called L2C), centered on 
the L2 frequency. Currently there are three fully 
operational modernized satellites in orbit broadcasting the 
L2C signal (Sükeová et al., 2007). 
 
The first modernized satellite, PRN17, was launched on 
25 September 2005 and the new L2C signal was made 
fully available from 15 December 2005. The second 
Block IIR-M satellite, PRN31, was launched on 25 
September 2006 and became fully operational from 12 

October 2006. PRN12 was launched on 17 November 
2006 and was set healthy on 12 December 2006. 
 
The third frequency band L5 (centered at 1176.55 MHz) 
will arrive with the Block IIF (“F” for follow-on) 
satellites, now scheduled to start to be launched in 2008 
or 2009.  
 
From the time PRN17 was placed in orbit, the L2C signal 
became an issue of worldwide interest to the GPS 
research community. Receivers capable of tracking the 
modernized L2C signal have been developed and 
provided by a number of manufacturers, such as Trimble, 
NovAtel, Septentrio, Leica and Topcon. The International 
GNSS Service (IGS) has organized a network of L2C 
signal tracking stations, hereinafter referred to as L2C 
Test Network which has been established in different 
places in the world. 
 
Cansel, the Canadian distributor of Trimble Navigation 
Ltd products provided to us on loan a Trimble R7 and a 
Trimble NetR5 receiver, both capable of tracking the L2C 
signal. The Trimble R7 receiver was connected to the 
same antenna used by IGS station UNB1 (now UNBJ) 
and became part of the L2C Test Network in January 
2006. This receiver was later replaced by the Trimble 
NetR5 receiver.  
 
The main objective of the investigation reported in this 
paper is to analyze the L2C signal, which is currently 
transmitted by modernized IIR–M satellites. This includes 
an analysis of the signal-to-noise ratios and of the 
multipath and noise level of the observations. Other 
objectives of the investigation are to maintain an L2C-
capable station using Trimble R7, Trimble NetR5, or 
other receivers and to test the receivers’ firmware 
versions in terms of L2C signal tracking capabilities.  
  
This paper uses as a reference work a paper published by 
Simsky [2006]. Simsky compares the tracking noise and 
multipath characteristics of L2C and C/A codes tracked 
by a  PolarRx2C receiver. His results were in agreemnet 
with the expections; that is, avarage amplitudes of 
multipath and tracking noise for the C/A code and L2C 
were found to be about equal. 
 
DATA COLLECTION AT UNB 
 
The major focus of this paper is on the L2C signal 
analysis involving the global Test Network of L2C 
tracking stations. It also includes a description of the L2C 
data collection using the Trimble R7 receiver, as follows. 
 
After initial testing procedures the Trimble R7 receiver 
was connected to the same antenna used by former IGS 
station UNB1 (currently UNBJ), by means of an antenna 
splitter. The Trimble R7 was in operation from 11 January 
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2006 to 10 October 2006. It was replaced by the Trimble 
NetR5, which was installed on 2 November 2006 and has 
been operational to date (4 May 2007). The Trimble R7 
station was called UNB3 and became one of the L2C Test 
Network stations. The same name (UNB3) remained for 
Trimble NetR5 as well. 
 
The UNB3 RINEX files for Trimble R7 contain the 
following observables: C1, C2, P2, L1, L2, S1 and S2. C1 
stands for C/A code, C2 for L2C code, P2 for P2(Y) code 
measurements, L1 and L2 for carrier-phase measurements 
on the L1 and L2 frequencies, respectively, and S1 and S2 
are the signal-to-noise ratio (SNR), for each satellite 
(Sükeová et al., 2007).  
 
Because RINEX 2.1 format didn’t have an observable 
code for L2C, a new observable column was introduced to 
accommodate L2C observations (C2’s column) in version 
2.11.This column is populated only for IIR-M satellites 
(such as PRN17, PRN 31 and PRN 12), and there are no 
P2 observations for these satellites if the receiver is not 
able of tracking simultaneous P2 and C2 (such as NetRS 
and R7 receivers using the firmware currently available). 
In case of NetR5 receivers, both columns might be 
populated for IIR-M satellites. In the case of satellites of 
other blocks, C2 column remains empty and P2 column is 
filled with P2 code observations 
 
As said before, the Trimble R7 receiver was replaced by 
the Trimble NetR5. One of the advantages of Trimble 
NetR5 over Trimble R7 is that both P2 and C2 
measurements are tracked simultaneously for the 
modernized satellites, therefore P2 code observations are 
available in addition to the L2C measurements.  
 
L2C TEST NEWORK 
 
The L2C Test Network (as of 22 December 2006) is 
illustrated in Figure 1. The date was chosen in order to 
show all of the stations involved in the L2C Test Network 
at the time of the data collection for this investigation. 
Table 1 summarizes the receiver and antenna types used 
at each station. 

 
Figure 1 L2C tracking Test Network 
 

Table 1 Receiver and antenna types used in the L2C 
tracking Test Network 

Station name Receiver Type Antenna type 
FAIC Trimble NetRS TRM29659.00 
HRAC Trimble NetRS TRM29659.00 
KOKC Trimble NetRS TRM29659.00 
MCMC Trimble NetRS AOAD/M_T  
NYAC Trimble NetRS AOAD/M_B  
PGC5 Trimble NetRS TRM29659.00 
UNAC Trimble NetRS TRM29659.00 
UNB3 Trimble NetR5 JPSREGANT_DD_E 
GANP Trimble NetR5 TRM55971.00 
BHAO Trimble NetRS TRM29659.00 
OURI Trimble NetRS TRM41249.00 
RIOP Trimble NetRS TRM41249.00 
ROSA Trimble NetRS TRM41249.00 

 
L2C Test network contributors have uploaded daily and 
hourly compact RINEX files containing the L2C 
measurements at 30 seconds sampling rate to the ftp 
server of the Crustal Dynamics Data Information System 
(CDDIS) at NASA’s Goddard Space Flight Center. Data 
from all stations in the IGS L2C Test Network can be 
found at: 
ftp://cddis.gsfc.nasa.gov/gps/data/l2ctest/hourly/2007/ and 
ftp://cddis.gsfc.nasa.gov/gps/data/l2ctest/daily/2007/. 
 
In this paper a one-day observation file was analyzed for 
station UNB3 (Trimble R7) on day 16 January 2006. Data 
from 1 December 2006 to 24 December 2006 was 
analyzed for stations UNB3 and GANP (Trimble NetR5) 
and for stations FAIC and UNAC (Trimble NetRS).  
 
METHODOLOGY 
 
The objective of this section is to show the calculation 
method of the C/A and L2C code multipath and noise 
level.  
 
A pseudo-observable which contains only receiver noise 
and multipath effects was created by differencing the raw 
pseudorange measurement, given by equation (1), and the 
raw carrier-phase measurement, given by equation (2), 
both of them with their ionospheric delay removed. This 
procedure follows the steps given by Langley [1998]. 
This section will explain how to remove the ionospheric 
delay from the raw carrier-phase and pseudorange 
observations, and how to obtain the code noise plus 
multipath pseudo-observable. 
 
At first, we will look at the pseudorange and carrier-phase 
measurement simplified equations, which are both 
expressed in length units: 
 

( )
ii pptropiioni mpdddtdTcp ερ ++++−+= , (1) 
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where i stands for the L1 or L2 frequency, pi is the 
measured pseudorange on the L1 or L2 frequency, ρ is the 
geometric distance between the receiver and satellite 
antennas, dT  and dt represent the receiver and satellite 
clock offsets relative to GPS Time (GPST), respectively, 

iiond and tropd are the ionospheric and tropospheric 

propagation delays, respectively, 
ipmp  represents the 

effect of multipath and 
ipε  the noise term. 

The carrier-phase measurement equation reads: 
 

( )
,

ii
mp

ddNdtdTc tropiioniii

ΦΦ ++

+−+−+=Φ

ε

λρ
 (2)   

                                                                                                                                                                                                                                
where λι  is the carrier wave length and Ni represents the 
carrier-phase ambiguity. The other terms in the carrier-
phase observations equation stand for the same effects as 
in the pseudorange observation explained above. Other 
terms such as satellite and receiver hardware delays have 
been ignored. 
 
The ionospheric delays on the two different frequencies 
can be related as follows: 
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where f1 and f2 are the carrier frequencies on L1 and L2. 
By forming the difference between the carrier-phase 
measurements on L1 and L2, the ionospheric delay on L1 
can be computed with an additive constant (mainly caused 
by carrier-phase ambiguities) and with multipath and 
noise contributions as: 
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The measure of the L1 ionospheric delay could be used to 
correct both code and carrier-phase measurements, if we 
knew the carrier-phase multipath, the noise values and the 
integer ambiguities. At best, we can compute a relative 
ionospheric delay d* which includes a constant 
contribution from the integer carrier-phase ambiguities, 
the multipath and noise terms (Langley, 1998): 
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Although the estimate of the ionospheric delay from 
carrier-phase measurements is biased by the ambiguities, 
when we use it to correct carrier-phase and pseudorange 
observations (by removing the relative ionospheric delay 
from both measurements) and difference the result we get 
(Langley, 1998):  
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If we assume, that the geometric distance, ρ, the receiver 
clock offset dT; and the satellite clock offset, dt, are the 
same for L1 and L2 carrier phase and pseudorange 
measurements, we arrive at the following equation: 
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The right-hand side of the equation (8) contains the 
pseudorange and carrier-phase multipath and noise and 
the ambiguity term. Since the carrier-phase measurement 
multipath and noise is insignificant in comparison with 
code multipath and noise, the right-hand side of the 
equation (8) gives the multipath and noise of the code 
measurement, offset by a constant component due to the 
carrier-phase ambiguities. Terms such as satellite and 
receiver hardware delays have been absorbed by the 
ambiguity parameters. 
 
RESULTS AND THEIR ANALYSIS 
 
In this section the results are presented and analyzed. We 
start with the signal-to-noise ratio values (SNR) as 
directly provided by the receivers. Following we make 
use of equation (8) to compute multipath and noise from 
Trimble R7, NetR5 and NetRS receivers’ data. 
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Signal-to-noise Ratio 
 
An attempt to gain a better understanding of the SNR of 
the new signal as compared to the legacy signal was done. 
SNR values on the L1 and L2 frequencies for all satellites 
are illustrated in Figures 2 and 3, respectively. The values 
refer to day: 17 December 2006 for station MCMC. The 
date and the station were chosen randomly as the SNR 
values could be taken from any other station at any other 
date in the L2C tracking Test Network.  
 
The range of the SNR values on the L1 frequency (Figure 
2) is approximately from 23.75 to 50.25 dB-Hz for all 
satellites. The range of the SRN values on the L2 
frequency (Figure 3) is approximately 12.5 to 49 dB-Hz 
for all satellites except the three modernized satellites: 
PRN 17, PRN 31 and PRN 12. By comparing the SNR 
levels on each frequency we can see that the SNR of the 
modernized satellites on L2 are higher than those for all 
other legacy satellites, reaching similar values of the SNR 
on the L1 frequency. This indicates an improvement of 
L2C signal’s SNR over the L2 P(Y) code.  
 
Table 2 summarizes the minimum and maximum 
elevation angles for satellites PRN 17, PRN 31 and PRN 
12, the maximum SNR values on both frequencies and the 
time when the maximum value occurred.  
 

Table 2 Summary of the maximum SNR values and 
elevation angles for PRN 17, PRN 31 and PRN 12 

Sat. 

Max. 
SNR on 

L1 
(dB-Hz) 

Max. 
SNR on 

L2 
(dB-Hz) 

Max. SNR 
occurred 
appr. at: 

Elevation 
angle 

min. – max. 
(deg) 

PRN17 50 52.75 12h 38m 1.26 – 59.20 
PRN31 49 51.50 3h 12m 0.20 – 56.25 
PRN12 49.25 51.25 14h 20m 1.31 – 52.76 

 

 
Figure 2 Signal-to-noise ratio on L1 
 

 
Figure 3 Signal-to-noise ratio on L2 
 
Code multipath and noise level analysis using a 
Trimble R7 receiver 
 
In this sub-section the multipath and noise level of C/A 
and L2C codes for PRN 17 and PRN 11 are analyzed 
using the Trimble R7 receiver. The noise plus multipath 
values referred to frequencies L1 and L2 were computed 
using the approach described above, equations (1) to (8).  
 
In order to better illustrate the noise level and the 
multipath, the mean of the computed values was removed. 
As the computed results were biased by the carrier-phase 
ambiguities, sections between each cycle-slip were 
identified during the implementation procedure and the 
mean value corresponding to each section was removed. 
 
Multipath and noise values with their mean removed for 
C/A code as of 16 January 2006 are illustrated in Figures 
4 and 6 for PRN 17 and PRN 11, respectively. 
 
From equation (8) the multipath and noise of the L2C and 
P2 codes can be derived by taking into account that the 
ionospheric delay on L2 is different from that on L1 (see 
equation (3)). The resulting multipath and noise levels for 
L2C (PRN 17) and P2 codes (PRN 11) are illustrated in 
Figures 5 and 7, respectively, with their mean value 
removed. The standard deviations of C/A, L2C and P2 
code multipath and noise levels are summarized in Table 
3. The maximum elevation angles of PRN 17 and PRN 11 
are 80 and 70 degrees, respectively. 
 
Table 3 suggests that the C/A-code multipath and noise 
level of PRN 17 is slightly smaller than for PRN 11. This 
difference is expected because PRN 17 is observed at 
slightly higher elevation angles compared to PRN 11. 
Even though one might expect to see also smaller noise 
levels for L2C from PRN 17 compared to P2 from PRN 
11, it can be noticed that the L2C noise level for PRN 17 
is actually higher than for P2, as observed for PRN 11. 
The causes of this behavior are discussed next. 
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Figure 4 Noise and multipath level of C/A code, PRN 17 

 
Figure 5 Noise and multipath level of L2C, PRN 17 

 
Figure 6 Noise and multipath level of C/A, PRN 11 

 
Figure 7 Noise and multipath level of P2, PRN 11 
 

Table 3 Standard deviations noise and multipath for PRN 
17 and PRN 11 

PRN 17 PRN 11  L2C C/A P2 C/A 
Standard 

deviation (m) 0.611 0.270 0.438 0.315 

 
The L2C code has a chipping rate of 1.023MHz. For noise 
and multipath performances, the L2C code behaves 
similarly to a BPSK modulation at 1.023MHz. This 
means, that the same level of noise and multipath is 
expected on C/A and L2C (Simsky et al., 2006).  
 
Our results show a contrast with this expectation as the 
standard deviation of the noise level of L2C signal is 
0.611 m, while it is 0.270 m for the C/A code. Therefore, 
according to our results, the noise level of the L2C code is 
higher than the noise of the C/A code. Why is there a 
contrast between the expected multipath and noise level 
and the obtained results? An explanation for the higher 
noise and multipath on the L2C code is found in the 
firmware of the Trimble R7 receiver used during the data 
collection (v. 2.26 and v. 2.28), since Everest (Trimble’s 
multipath mitigation algorithm) was not enabled for L2C 
tracking. As pointed out by Mallen [2007] there were also 
some residual tracking issues which slightly increased the 
noise on the L2C observable. The differences seen in 
noise level therefore came mainly from the different 
treatment given to the observations, rather than purely 
signal quality. Both issues were fixed in Trimble R7 
firmware version 2.30 which was released on 21 
September 2006 (Sükeová et al., 2007).  
 
If we compare Figure 4 to 6, and Figures 5 and 7 we can 
see that the P2 code performance at low elevation angles 
on the multipath and noise is different from that of the 
other codes. This trend can be explained by firmware 
issues which, according to the manufacturer, have been 
fixed in v.2.30 (Mallen, 2007). This trend also causes the 
higher standard deviation of 0.438m on P2 code. 
 
Code multipath and noise level analysis based on the 
L2C global Test Network 
 
Four stations have been chosen from the global L2C Test 
Network to be used in this analysis. They are stations 
FAIC, UNAC, UNB3 and GANP (see Figure 1). The first 
two stations use a Trimble NetRS receiver; while the last 
two stations use a Trimble NetR5 receiver (see Table 1). 
Similar analysis as with the Trimble R7 receiver has been 
done for the chosen four stations. The objectives of this 
investigation are to analyze the L2C code quality, to test 
the receivers’ firmware versions in order to demonstrate 
that Trimble’s multipath mitigation algorithm (Everest) is 
enabled on both L1 and L2 frequencies and how Everest 
influences the resulting multipath and noise values. 
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As many as 24 days of data have been analyzed for the 
four stations from 1 December 2006 until 24 December 
2006. Multipath and noise values for each observation 
have been computed using the methodology described 
above. 
 
The standard deviations of multipath and noise values 
have been calculated for each of:  

• 10-degree elevation angle bins, from 0 to 90 
degrees (9 bins); 

• the four stations from the global L2C Test 
Network (FAIC, UNAC, UNB3 and GANP); 

• the modernized satellites; and 
• C/A and L2C codes 

 
in two ways:  

• for each day separately (i); and  
• for the entire 24-days period as a whole (ii).  
 

In Tables 4 to 7 we give the standard deviations for the 
entire 24-days period (ii) for a particular station (UNB3, 
GANP, FAIC or UNAC), for all modernized satellites 
(PRN17, PRN31 and PRN12), each elevation angle bin 
and each code (C/A and L2C). The empty blocks in 
Tables 4 to 7 indicate that for those elevation angle bins 
there were no observations for the particular satellite. 
 
Figures 8 to 13 illustrate the standard deviations 
representing the entire 24-days period (ii) for each one of 
to the elevation angle bins as dots. The standard deviation 
of (i) is represented by an error bar superimposed on each 
standard deviation and expanded twice its initial 
magnitude.  
 
Each figure represents the solution for two stations 
grouped according to the receiver type, a particular 
satellite (PRN17, PRN31 or PRN12) and each code (C/A 
and L2C). The vertical axis stands for the standard 
deviation in meters for C/A or L2C code and the 
horizontal axis represents the lower limit of the elevation 
angle bin (i.e. 0 stands for the elevation angle interval 
from 0 to 10 degrees, 10 represents the bin from 10 – 20 
degrees, etc.). 
 
We would like to call the attention to the fact that the 
standard deviations decrease with the increase in 
elevation angle, and also that the standard deviations for 
C/A and L2C are similar for those stations using NetR5 
(UNB3, GANP) but different for those using NetRS 
(FAIC, UNAC). 
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Figure 8 C/A and L2C code multipath and noise standard 
deviation, PRN 17, stations UNB3 (top) and GANP 
(bottom) 
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Figure 9 C/A and L2C code multipath and noise standard 
deviation, PRN 17, stations FAIC (top) and UNAC 
(bottom) 
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Figure 10 C/A and L2C code multipath and noise 
standard deviation, PRN 31, stations UNB3 (top) and 
GANP (bottom) 
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Figure 11 C/A and L2C code multipath and noise 
standard deviation, PRN 31, stations FAIC (top) and 
UNAC (bottom) 
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Figure 12 C/A and L2C code multipath and noise 
standard deviation, PRN 12, stations UNB3 (top) and 
GANP (bottom) 
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Figure 13 C/A and L2C code multipath and noise 
standard deviation, PRN 12, stations FAIC (top) and 
UNAC (bottom) 
 
From Figures 8 to 13 we corroborate the elevation angle 
dependence of the standard deviations, i.e. at low 
elevation angle intervals the variance is higher than at 
higher elevation angle bins, as expected.  
 
In most of the cases the error bars at the first elevation 
angle bin are higher than for the other bins seen in Tables 

4 to 7. This can be explained by the fact that a particular 
satellite has not been tracked under the same initial 
elevation angle each day during the 24-day period. 
Therefore when the satellite was tracked in higher initial 
elevation angle, the resulting standard deviation (i) for 
that particular day was determined from a smaller number 
of observations. Also at lower elevation angles the 
satellite’s speed is higher with respect to the receiver’s 
position; therefore less data can be collected in a 0-10 
degrees elevation bin in comparison with the other 
elevation angle bins within a day. This explains the higher 
error bars in the first elevation angle bin. 
 
Another issue of our particular interest which has been 
investigated in this project is the Trimble’s Multipath 
Mitigation Algorithm. As mentioned before the same 
multipath and noise level is expected on C/A and L2C. 
From our previous analysis with the Trimble R7 receiver 
we concluded, that the expected results have not been 
reached because Everest was not enabled on the L2 
frequency.  
 
To further analyze if Everest is enabled on both 
frequencies for both types of receivers used in the L2C 
tracking Test Network the same four stations have been 
used. 
 
Let us examine first the Trimble NetR5 receiver (stations 
UNB3 and GANP). From Tables 4 to 7 we can see that 
the standard deviations for stations GANP and UNB3 
have similar values on the L1 and L2 frequencies for all 
satellites (expect the first elevation angle bin, which has 
been explained above). This demonstrates that the Everest 
is enabled on both frequencies. 
 
On the other hand, having a closer look at stations FAIC 
and UNAC one can realize that the standard deviations of 
the L2C multipath and noise level are higher than for the 
C/A code for all satellites. This indicates that the Everest 
was not enabled on the L2 frequency in the Trimble 
NetRS receivers.  
 
The Trimble NetRS receivers’ firmware version used 
during the analyzed 24 days was v.1.1-5 released on 13 
January 2006. This version was the last released firmware 
version for the Trimble NetRS receivers at the time of the 
data collection. 
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Table 4 C/A and L2C code standard deviations for PRN 17, PRN 31 and PRN 12 – station UNB3
Elevation angle 

bins (deg) 0 -10 10 - 20 20 -30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 

Std.CA (m) 0.602 0.491 0.338 0.251 0.210 0.175 0.150 0.136 0.127 

PR
N

 1
7 

Std. L2C 
(m) 0.358 0.427 0.353 0.252 0.239 0.222 0.209 0.201 0.194 

Std.CA (m) 0.492 0.429 0.309 0.241 0.185 0.163 0.155 0.129  

PR
N

 3
1 

Std. L2C 
(m) 0.335 0.328 0.270 0.235 0.227 0.208 0.218 0.206  

Std.CA (m) 0.510 0.471 0.347 0.255 0.207     

PR
N

 1
2 

Std. L2C 
(m) 0.356 0.379 0.283 0.250 0.229     

 
Table 5 C/A and L2C code standard deviations for PRN 17, PRN 31 and PRN 12 – station GANP

Elevation angle 
bins (deg) 0 -10 10 - 20 20 -30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 

Std.CA (m) 0.513 0.355 0.268 0.230      

PR
N

 1
7 

Std. L2C 
(m) 0.577 0.364 0.309 0.258      

Std.CA (m) 0.551 0.426 0.284 0.221 0.184     

PR
N

 3
1 

Std. L2C 
(m) 0.656 0.384 0.302 0.276 0.231     

Std.CA (m) 1.286 0.679 0.294 0.220 0.190 0.179 0.163 0.161 0.160 

PR
N

 1
2 

Std. L2C 
(m) 0.863 0.557 0.377 0.255 0.251 0.222 0.209 0.211 0.209 

 
Table 6 C/A and L2C code standard deviations for PRN 17, PRN 31 and PRN 12 – station FAIC

Elevation angle 
bins (deg) 0 -10 10 - 20 20 -30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 

Std.CA (m) 1.6211 1.030 0.698 0.431 0.341 0.285    

PR
N

 1
7 

Std. L2C 
(m) 2.230 1.451 0.917 0.733 0.599 0.533    

Std.CA (m) 1.133 0.906 0.701 0.420 0.356     

PR
N

 3
1 

Std. L2C 
(m) 1.811 1.311 0.997 0.717 0.599     

Std.CA (m) 1.442 0.829 0.670 0.450 0.356 0.255 0.229 0.240  

PR
N

 1
2 

Std. L2C 
(m) 2.113 1.162 1.042 0.757 0.659 0.528 0.471 0.485  

 
Table 7 C/A and L2C code standard deviations for PRN 17, PRN 31 and PRN 12 – station UNAC

Elevation angle 
bins (deg) 0 -10 10 - 20 20 -30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 

Std.CA (m) 0.824 0.538 0.404 0.272 0.217 0.192 0.199 0.175 0.140 

PR
N

 1
7 

Std. L2C 
(m) 0.981 0.894 0.659 0.549 0.490 0.443 0.428 0.422 0.421 

Std.CA (m) 0.794 0.561 0.341 0.288 0.205 0.178 0.168 0.155 0.147 

PR
N

 3
1 

Std. L2C 
(m) 1.121 0.839 0.631 0.550 0.477 0.452 0.439 0.429 0.429 

Std.CA (m) 0.794 0.594 0.473 0.412 0.414 0.259 0.188 0.153 0.159 

PR
N

 1
2 

Std. L2C 
(m) 1.116 0.896 0.599 0.532 0.489 0.457 0.440 0.439 0.436 

 
 
 

240



CONCLUSIONS 
 
The L2C modernized civil signal has been collected at 
UNB from 11 January 2006 until 10 October 2006 using a 
Trimble R7 receiver. Several analyses have been made on 
the L2C signal based on them.  
 
The signal-to-noise ratio of all satellites has been 
compared on the L1 and L2 frequencies. The conclusion 
from this comparison is that the signal-to-noise ratio of 
L2C signals is higher than the signal–to-noise ratio of P2 
code, and reaches similar values as those of the SNR of 
the C/A code on the L1 frequency.  
 
The noise level of the L2C and C/A code was calculated 
and analyzed for the Trimble R7 receiver. From the 
comparison of the multipath and noise of the two codes it 
can be seen that the noise level of the L2C code was 
higher than the noise of the C/A code, which was against 
the expectation of having similar noise and multipath 
levels for both L2C and C/A code. However, this can be 
explained by issues in the firmware versions 2.26 and 
2.28, which were used in the Trimble R7 receiver during 
the observation period. Those issues have been fixed in 
the new firmware release, version 2.30 (Mallen, 2007). 
 
Similar analysis has been made for four stations in the 
global L2C tracking Test Network in order to analyze the 
quality of the L2C signal, to test the receivers’ firmware 
versions and investigate how it influences the C/A and 
L2C code multipath and noise levels. The chosen stations 
were FAIC, UNAC (which use Trimble NetRS), UNB3 
and GANP (which use Trimble NetR5). Standard 
deviations of multipath and noise values were computed 
over the entire 24-day period and each day separately for 
each elevation angle bin, satellite, station and code.  
 
After examining the results from the stations using 
Trimble NetR5 receiver we realized that Everest was 
enabled on both frequencies i.e. the standard deviations of 
the C/A and L2C codes were similar in the case of all 
modernized satellites. Stations using Trimble NetRS 
receiver had higher standard deviations for the L2C code 
then for the C/A code. That indicates that the Everest in 
not enabled on the L2 frequency.  
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