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ABSTRACT

Among the available technologies such as cables and
lasers, the Global Positioning System (GPS) is being
increasingly used for automated continuous monitoring
of landslides and avalanches. The timely identification of
precursory movements of landslides could save lives and
minimise collateral damage.

Carrier-phase observations from four or more GPS
satellites allow relative displacements to be measured

with centimetre accuracy. However, signals from four
satellites with good geometry are not always guaranteed,
as the landslide sites are often located along mountain
slopes, which are subject to poor satellite visibility. Such
landslide locations may, therefore, experience several
minutes to hours of positioning discontinuity for some
periods of the day. The effect of the availability of
satellite signals is greater for sites located on north-
facing slopes due to GPS orbit characteristics.

We have investigated a method for detecting a
displacement of the order of millimetres under poor
satellite visibility. We estimate the displacement without
differencing the positioning results, supposing that a
landslide occurs along the slope in the direction of
maximum inclination (this assumption could be later
replaced with a landslide outbreak model for a particular
site). First, we investigated the method to detect a
landslide with only 2 satellites (1 misclosure vector) and
then, the improvement of the positioning results when
more satellites are available.

In this paper, we discuss our algorithms permitting
continuous landslide monitoring for low visibility
observations and some results of field tests. We discuss
specific aspects of our investigations using field data
simulating landslides: 1) multipath elimination,
2) estimation of displacement supposing a priori
knowledge of the antenna location at the monitoring site,
and 3) the necessary time span of observations for
detecting landslides.

INTRODUCTION

Carrier-phase observations from four or more GPS
satellites allow relative displacements to be measured
with centimetre accuracy. GPS has been widely used for
measuring crustal motion, river level and ground
subsidence, and for monitoring deformation of man-
made structures such as bridges, dams, buildings, etc.
(Ashkenazi et al., 1998; Duffy & Whitaker, 1999; Moore



et al., 2000). GPS is being increasingly used also for
automated continuous monitoring of landslides and
avalanches.

For such GPS-based deformation monitoring systems,
the accuracy, availability, reliability and integrity of the
positioning solutions heavily depend on the number and
geometric distribution of satellites being tracked.
However, signals from four satellites with good
geometry are not always guaranteed, as the landslide
sites are often located on mountain slopes, which are
subject to poor satellite visibility. Such landslide
locations may, therefore, experience several minutes to
hours of positioning discontinuity for some periods of
the day. The problem of satellite-signal availability is
greater for sites located on north-facing slopes due to
GPS orbit characteristics.

In order to use GPS in such situations for monitoring
hill-side stability, we investigated a method for detecting
a displacement of the order of millimetres under poor
satellite visibility using the principle of hyperbolic
navigation. We discuss in the following our algorithms
permitting continuous landslide monitoring for low
visibility observations and present some results of field
tests.

GPS OBSERVATION EQUATIONS

The observation equation for GPS carrier phase
measurements is given by (Leick 1995):

Φ Φ= + ⋅ − + − + +ρ λ εc dt dT N d dion trop( ) (1)

For a pair of stations simultaneously observing the same
satellite, the mathematical model for the between-
receiver single differenced observable is obtained as
follows:

∆Φ ∆ ∆ ∆ ∆ ∆ ∆ Φ= + ⋅ + − + +ρ λ εc dT N d dion trop (2)

Between-receiver single differences remove the satellite
clock errors and greatly reduce the effects of errors
associated with satellites and the signal path such as orbit
errors and atmospheric delays for short baselines.

The double difference observations are obtained by
subtracting the single difference observation of a
reference satellite from that of another satellite. The
receiver-satellite double differences are expressed by the
following equation and we note that double differencing
also removes the effects of errors associated with the
misalignment of clocks between the two receivers:

∇ =∇ + ∇ −∇ +∇ +∇∆Φ ∆ ∆ ∆ ∆ ∆ Φρ λ εN d dion trop (3)

In Equations (1) to (3), ρ is the distance between satellite
and receiver (m); c is the light speed in vacuum (m/s); Φ
is the carrier-phase measurement (m); λ is the carrier
wavelength (m); N is the integer carrier-phase ambiguity;
dion is the bias of the ionospheric delay (m); dtrop is the
bias of the tropospheric delay (m); dt is the bias of the
satellite clock (s); dT is the bias of the receiver clock (s);
εΦ is the measurement noise and the errors which cannot
be modeled. The symbols ∆(∗) and ∇∆(∗), are the single
and double difference operators, respectively.

The observation equation is written as:

l = ƒ(X) + V (4)

where l is the observation vector, X  is the vector of
unknown parameters; f(*) is the vector of known non-
linear functions mapping X to l; and V is the vector of
residuals.

To use a Kalman filter or least-squares algorithm, the
equations must be linearised with respect to the
unknowns. Equation (4) is linearised by replacing the
non-linear functions with their Taylor series
approximations expanded about an approximate position
of the observer, X0 and taking only the first order terms:

l X
X

X V
X

− = +f f d( )0
0

∂
∂

(5)

HYPERBOLIC METHOD FOR POOR SATELLITE
VISIBILITY

For the use of least-square algorithms, signals from at
least four satellites with good geometry are needed.
However, landslide sites are often located on mountain
slopes, which are subject to poor satellite visibility, and
the minimum needed number of satellites is not
guaranteed.

We investigated a method for detecting a displacement of
the order of millimetres under poor satellite visibility
using the principle of hyperbolic navigation (Fig. 1). The
geometrical distances from the receiver M to two
satellites A and B are denoted DA and DB. We compute
the difference of the distances (DA-DB). The locus of the
points that have the same value for DA - DB , is a
hyperboloid which includes the receiver point (Strang &
Borre, 1997). In the vicinity of the receiving point M, we
assume that the surface of the hyperboloid is a plane (P1).
Plane P1 is oriented to the direction that divides the angle
made by the two satellites viewed from the receiving
point M. Plane P1 is perpendicular to the plane that
includes the positions of two satellites A and B, and the
receiver position M. The coordinates of the three points



A, B, and M establish the equation of this plane. The
vector of direction cosines for P1 can be specified from
the geometrical relationship of the three points.

Figure 1. Hyperbola and schematic presentation of landslides

When plane P1 includes the point M (x0, y0, z0) and the
components of the normal vector to P1 N  are a, b and c,
the equation of the plane is expressed as follows:

a x x b y y c z z⋅ − + ⋅ − + ⋅ − =( ) ( ) ( )0 0 0 0 (6)

This equation can be rewritten as:

a x b y c z d⋅ + ⋅ + ⋅ − =0 (7)

with d a x b y c z= ⋅ + ⋅ + ⋅0 0 0 .

We define a local coordinate system that has the x-axis
pointing towards the east, y-axis towards the north, and
z-axis perpendicular to the both axes pointing up towards
the zenith. The origin is the point M.

We assume that the monitoring receiver is located on the
slope and the slide occurs along the slope that has a
maximum inclination. The shape of the slope is
approximated by a plane. A unit displacement along the
slope is a vector of direction cosines, defined by the
azimuth ψ  that is measured from the north, and the
elevation angle θ. Then the vector of direction cosines of
the slope V is expressed as follows:

V
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Now we consider that the receiver moves a distance D
from the point M to M' along the slope. The movement
caused by the landslide is usually downwards. A unit
displacement along the slope can be expressed with a
vector of direction cosines V (i, j, k) as follows:

x x
i

y y
j

z z
k

− = − = −0 0 0 (9)

The line given by Equation (9) represents the maximum
gradient of the slope and gives the direction in which
movement is expected.

We consider two planes of positions: P1 and P2 as shown
in Figure 2. Plane P1 includes the initial position (M) and
Plane P2 includes the position after the slide (M'). Plane
P1 is the theoretical (computed) plane of positions and
Plane P2 is obtained from the observation. W  is the
misclosure vector.

Figure 2. Geometry of planes of positions and displacement
along the slope of maximum inclination
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The inner product of the normal vector and the vector of
direction cosines is expressed as:s

N V N V⋅ = cosδ (10)

As the vector of direction cosines is a unit vector |V| = 1,
we can rewrite the relationship as:

cosδ= ⋅N V
N

(11)

From the geometrical relationship shown in Figure 2, we
obtain the following equation:

D Wcosδ= (12)

The angle between the slope of maximum inclination and
the observed plane of positions P2 is φ . From the
complementary relationship of trigonometry, the cosine
of the angle δ equals the sine of the angle φ. The sine of
this angle is expressed in the following equation:

sin cosφ δ= = ⋅ + ⋅ + ⋅
+ +

a i b j c k
a b c2 2 2

(13)

The position after the landslide has occurred is estimated
from the displacement D (M-M'). The magnitude of D is
a function of the angle φ and the separation between the
two planes of positions which includes both points, the
initial point M and the point M' after the slide. The
separation can be obtained as the misclosure W
(observed - computed). The relationship in Equation (12)
can be rewritten as:

D Wsinφ= (14)

Thus we obtain:

D
W

=
sinφ

(15)

WEIGHTING STERATEGY IN CASE OF BETTER
SATELLITE VISIBILITY

When the inverse of the least-squares normal equations
matrix is not available due to poor geometry (either too
few satellites or very high position dilution of precision
(PDOP) with four or more satellites), the standard least-
squares method cannot provide a solution. However, our
method provides a solution with data from only
2 satellites. When 2 or more misclosures (with 3 or more
satellites) are available, it is better to consider the use of

observation weighting for finding the distance between
the positions a priori and after the displacement. We
compute the displacement for n  combinations of 2
satellites. The weighing scheme is expressed as follows:

D p D p D p D
p p p

n n

n
= ⋅ + ⋅ + + ⋅

+ + +
1 1 2 2

1 2

L
L

(16)

For appropriate weighting, the variance of displacement
D must be correctly calculated. The weight can be
obtained from the inverse of the variance resulting from
the least-squares adjustment or Kalman filtering. When
all the weights are equal to 1, the results obtained are
equivalent to those obtained by a standard least-squares
method.

The variance of displacement D is computed from the
variance of the misclosure W scaled with the separation
of the planes of positions dv and the cosecant of the
angle of maximum inclination of the slope dd.

Weights are therefore expressed as:

p
dv dd

=
⋅
1

2 2( ) ( )
(17)

The variance of the distance can be defined by the
variance of the misclosure scaled by the squares of dv
and dd.

σ σD W dv dd2 2
2 2

= ⋅( ) ⋅( ) (18)

The normal distance to the plane of positions from the
origin, is expressed as follows:

dv
d

a b c
=

+ +2 2 2
(19)

where d a x b y c z= ⋅ + ⋅ + ⋅0 0 0 .

We consider the point M' as origin and then we compute
each normal distance to the plane of positions which
includes the point M.

The cosecant of the angle φ  between the slope of
maximum inclination and a plane of positions is
expressed as:

dd ec
a b c

a i b j c k
= =

+ +
⋅ + ⋅ + ⋅

cos φ
2 2 2

(20)

In our algorithms, all the computations are done in
double difference mode to eliminate common errors.



FIELD TESTS

In order to verify the algorithms developed for landslide
monitoring under poor satellite visibility, we conducted
realistic field tests by selecting a period of unfavourable
geometry. The following describes the testing
methodology and results and analysis of the field tests.

We simulated landslides by installing two GPS antennas
on the roof of Furuno's research centre building. The roof
faces north, and is inclined by 30°. The area was
surrounded by reflective objects and therefore it was
considered to be a high multipath environment. We
collected data at 1 Hz for a period of an hour on each of
two days – 24 and 25 December 2002. Two single
frequency receivers were used. The GPS receivers used
for the tests were a variation of the GN-77, Furuno's
12-channel GPS receiver for car navigation. The
receiver's firmware was modified to obtain the output of
carrier-phase measurements at a rate of up to 5 Hz. One
of the antennas was slid along the slope by 1 cm during
the observations.

Figure 3 shows the installation for our experiments. Two
GPS antennas were placed on the roof of the building
with a separation about 20 m. Figures 4 and 5 show the
antennas of the reference and mobile stations,
respectively. Figure 6 shows our set-up for simulating the
slides. When the protruding wooden bar was removed,
the antenna slid downwards by 1 cm.

Figure 3. Antenna installation on the roof

Figure 4. Reference antenna

Figure 5. Monitoring antenna

Figure 6. Set-up for simulating slides



Observations were made with an elevation mask angle of
15°. Figure 7 shows the satellite constellation for a whole
day on the 25th of December. The roof faces north, but
the sky plot clearly shows there were no satellites
available in that direction. Figure 8 shows the satellite
constellation during the test on that day. Four satellites
(PRN 14, 30, 25, 6) were visible during the test. For our
analyses, we used data spanning a period of about 40
min. (0:20-0:56 UTC for the 24th and 0:16-0:56 UTC for
the 25th of December).

Figure 7. Satellite constellation for a whole day (25 December)

Figure 8. Satellite constellation during the test (25 December)

Figure 9 shows the results of conventional positioning
using standard least-squares algorithms. We used all 4
satellites available during the test. We experienced large
errors when the PDOP value surged to more than 20 for
13 minutes.

Figure 9. Results using a standard least-squares method

We estimated the displacement without differencing the
positioning results, supposing that a landslide occurred
along the slope in the direction of maximum inclination.
Figure 10 shows the results of our new approach
estimating the displacement (relative movement) instead
of absolute movement. We used only two satellites (PRN
14 and 30) to obtain this result. This method allowed us
to estimate the movement even for the period of
unfavourable geometry. As the antennas were located in
an area surrounded by reflective objects such as
buildings, the results showed the presence of high
multipath.

We used the data from the previous day to remove the
multipath by correlating the multipath signature in the
solutions. The results after removing the multipath are
shown in Figure 11. Figure 12 shows the results of
landslide detection using weighted data from 4 satellites.
The results shown in Figures 9 and 12 are from the same
data but using different processing methods.

Figure 10. Results using the new approach with 2 satellites
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In order to investigate the necessary time span of
observations for detection of landslide precursory
motion, we used moving averages of different window-
width to determine the optimum smoothing for detecting
the motion of an antenna. Using a window of 30 seconds
(shown in blue in Figures 11 and 12), the maximum
values of variation became less than 5 mm. A 30-second
window allowed the detection of the slide. When 4
satellites are available, we can obtain even better results.

Figure 11. Results using the new approach with 2 satellites
after multipath removal

Figure 12. Results using the new approach with 4 satellites
after multipath removal

Table 1 shows a summary of the results obtained using 2
satellites. Table 2 shows the same but using 4 satellites.
The values in the tables are in cm. The results obtained
using a 15-second window-width seems to be sufficient
for this data. The symbols µ and σ represent the mean
and RMS value (1 sigma), respectively

Table 1. Summary of the displacement estimate after removing
the multipath using 2 satellites

Before the slide After the slide
Raw 15 s 30 s Raw 15 s 30 s

Min -1.80 -0.43 -0.26 -2.30 -1.61 -1.52
Max 2.00 0.71 0.50 0.60 0.42 0.29

µ 0.03 0.03 0.02 -1.12 -1.11 -1.10
σ 0.53 0.19 0.13 0.48 0.25 0.23

Table 2. Summary of the displacement estimate after removing
the multipath using all 4 visible satellites

Before the slide After the slide
Raw 15 s 30 s Raw 15 s 30 s

Min -1.50 -0.51 -0.26 -2.20 -1.47 -1.34
Max 1.60 0.52 0.33 0.40 0.33 0.21

µ 0.06 0.06 0.06 -1.06 -1.05 -1.04
σ 0.46 0.18 0.12 0.39 0.18 0.17

We have shown that we can estimate the displacement
(the actual change in position along the slope due to the
"landslide") from observations of just two satellites when
the direction of the movement is known. In this case, the
slope is another line of position. This assumption could
be later replaced with a landslide outbreak model for a
particular site.

CONCLUSIONS

We have developed and investigated a new method for
detecting landslides under low satellite visibility – a
common occurrence as landslide sites are often located
along mountain slopes with obscured views of the whole
sky. We estimated the displacement without differencing
the positioning results, supposing that a landslide occurs
along the slope in the direction of maximum inclination.

Field tests were carried out by simulating precursory
landslide displacements of 1 cm. Multipath was removed
using the data from the previous day. We used moving
averages of different window-widths. Using a window of
30 seconds, the variation became less than 5 mm and
allowed the detection of the slide.

The algorithms we developed allowed continuous
landslide monitoring for low visibility observations with
only 2 satellites. The positioning results can be improved
with a weighted mean technique when more satellites are
available.
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