

PRECISE ORBIT DETERMINATION OF THE CHAMP SATELLITE WITH STAND-ALONE GPS

Sunil B. Bisnath and Richard B. Langley

The European Navigation Conference 2002 – GNSS 2002 27-30 May 2002 Copenhagen, Denmark

> 02/06/23 S.Bisnath

OVERVIEW

- > Introduction of single-receiver processing technique.
- Description of UNB technique:
 - > Principle.
 - Modelling.
- Spaceborne data processing:
 - Measurement description.
 - > Results.
 - Analysis.
- Conclusions and further research.

- > Purpose of research:
 - To develop processing strategy to provide precise positioning of any platform using a single, geodetic-grade GPS receiver.
- Rationale for capability:
 - Rests in desire to remove requirement of reference receiver(s) for high-precision positioning.
- Processing technique possible because:
 - GPS can provide direct, continuous, accurate, 3-dimensional positioning.
 - > High-quality GPS data products (orbits and clocks) available.
 - Removal of Selective Availability (SA).
 - Have developed GPS-only technique make no assumptions regarding platform dynamics – hence platform-independent.

S Bisnath

- > Purely *geometrical* state-space, GPS-based solution.
- Simultaneously:
 - > Utilize *code* data to compute mobile receiver *position*,
 - > and *carrier* data to compute mobile receiver *position change*,
 - ➢ in a kinematic, sequential, least-squares filter/smoother.
 - Inputs (all *readily available* aside from mobile receiver data):
 - Dual-frequency code and carrier measurements from mobile receiver (preferably high-rate).
 - Precise GPS constellation ephemerides.
 - Precise GPS constellation satellite clock offsets from GPST.
- Interpolate GPS-determined positions for mobile receiver state throughout trajectory.

- ➢ No need for:
 - Reference receiver or reference receiver network that information basically provided by IGS data *products*.
 - Assumed dynamic models time-differenced, carrier-phase observations precisely measure motion.
- > Entitled:
 - > Carrier-phase-connected, pseudorange point positioning.

CARRIER-PHASE-CONNECTED, PSEUDORANGE POINT POSITIONING

GPS measurement	low precision (10s of cm), unambiguous <i>pseudoranges</i>	high precision (sub-mm), ambiguous <i>carrier phases</i>
decimetre accuracy		
measurement constituents which must be estimated or eliminated	 satellite position error × × satellite clock × × receiver clock × × troposphere × × ionosphere × × multipath × receiver noise × 	 satellite position error x x satellite clock x x receiver clock x x troposphere x x ionosphere x x ionosphere x x multipath receiver noise carrier-phase ambiguity x x
 partially addressed x × fully addressed 		02/06/2

02/06/23 S.Bisnath

Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick

02/06/23 S.Bisnath

SCHEMATIC OF FILTER PRINCIPLE

02/06/23 S.Bisnath

Linearized observation equations:

$$\begin{bmatrix} \mathbf{P}_{t} - \mathbf{P}_{t}^{\mathbf{0}} \\ \boldsymbol{\delta \Phi}_{t} - \boldsymbol{\delta \Phi}_{t}^{\mathbf{0}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{A}_{t} \\ -\mathbf{A}_{t-1} & \mathbf{A}_{t} \end{bmatrix} \begin{bmatrix} \boldsymbol{\delta x}_{t-1} \\ \boldsymbol{\delta x}_{t} \end{bmatrix} + \begin{bmatrix} \mathbf{e}_{t} \\ \mathbf{\epsilon}_{t-1,t} \end{bmatrix} \qquad \mathbf{C}_{\mathbf{P}_{t}} \quad \mathbf{C}_{\boldsymbol{\delta \Phi}_{t}}$$

Least-squares solution:

$$\begin{bmatrix} \hat{\mathbf{x}}_{t-1} \\ \hat{\mathbf{x}}_{t} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{x}_{t-1}^{0} \\ \mathbf{x}_{t}^{0} \end{bmatrix} - \begin{bmatrix} \mathbf{A}_{t-1}^{T} \mathbf{C}_{\delta \Phi_{t}}^{-1} \mathbf{A}_{t-1} + \mathbf{C}_{\mathbf{x}_{t-1}}^{-1} & -\mathbf{A}_{t-1}^{T} \mathbf{C}_{\delta \Phi_{t}}^{-1} \mathbf{A}_{t} \\ -\mathbf{A}_{t}^{T} \mathbf{C}_{\delta \Phi_{t}}^{-1} \mathbf{A}_{t-1} & \mathbf{A}_{t}^{T} \left(\mathbf{C}_{\mathbf{p}_{t}}^{-1} + \mathbf{C}_{\delta \Phi_{t}}^{-1} \right) \mathbf{A}_{t} \end{bmatrix}^{-1}$$

$$\times \begin{bmatrix} -\mathbf{A}_{t-1}^{T} \mathbf{C}_{\delta \Phi_{t}}^{-1} \mathbf{w}_{\delta \Phi} \\ \mathbf{A}_{t}^{T} \mathbf{C}_{\mathbf{P}_{t}}^{-1} \mathbf{w}_{\mathbf{p}} + \mathbf{A}_{t} \mathbf{C}_{\delta \Phi_{t}}^{-1} \mathbf{w}_{\delta \Phi} \end{bmatrix}$$

02/06/23 S.Bisnath

Pseudorange measurement contribution:

$$\mathbf{P}_{t} - \mathbf{P}_{t}^{0} = \mathbf{A}_{t} \boldsymbol{\delta} \mathbf{x}_{t} + \mathbf{e}_{t}; \qquad \mathbf{C}_{\mathbf{P}}$$

Carrier-phase measurement contribution:

$$\delta \Phi_{t} - \delta \Phi_{t}^{0} = -\mathbf{A}_{t-1} \delta \mathbf{x}_{t-1} + \mathbf{A}_{t} \delta \mathbf{x}_{t} + \varepsilon_{t-1,t}; \qquad \mathbf{C}_{\delta \Phi_{t}}$$

Optimal smoothed solution:

$$\hat{\mathbf{x}}_{\mathbf{s}_{t}} = \mathbf{C}_{\mathbf{f}_{t}}^{-1} \hat{\mathbf{x}}_{\mathbf{f}_{t}} + \mathbf{C}_{\mathbf{b}_{t}}^{-1} \hat{\mathbf{x}}_{\mathbf{b}_{t}}$$

- Observables are ionosphere-free, undifferenced pseudorange and ionosphere-free, time-differenced carrier phase.
- Modelling considerations more acute than for relative positioning:
 - ➢ Relativistic GPS SV clock correction (due to orbital eccentricity).
 - ➢ GPS SV antenna phase-centre to centre-of-mass offset.
 - GPS SV phase wind-up (especially for large sampling intervals of differenced phase).
 - Model compatibility with IGS products.

- The following capabilities can be realized by placing a GPS receiver modified for spaceflight (a *spaceborne* GPS receiver) aboard a Low Earth Orbiter (LEO) spacecraft:
 - Orbit determination (position and velocity).
 - Real-time [few-metre-level].
 - Post-processed [decimetre-level].
 - Attitude determination [sub-degree-level].
 - **Timing** [sub-microsecond-level].
 - Ranging information between spacecraft and GPS satellites for GPS signals transiting the atmosphere (limb sounding).

- Gravity field recovery and geoid determination.
- ➢ Radar and laser altimetry.
- Interferometric Synthetic Aperture Radar mapping.
- Other remote sensing instrumentation positioning.
- Time-tagging and synchronization of scientific sensor measurements.
- Ionospheric limb sounding.
- Tropospheric limb sounding.
- Sea-surface profiling.

S Bisnath

- > Data description:
 - > Orbits of the dual-frequency data from the CHAMP satellite.
 - > JPL BlackJack dual-frequency receiver, tracking up to eight SVs.
 - > Zenith-mounted POD antenna on choke-ring.
 - ➢ January 5th 2002.
 - ➢ 10 second data interval.
 - > No elevation angle mask, but signal-to-noise mask used.
 - ➢ IGS precise GPS satellite orbits and clock offsets.
- > Processing:
 - > Investigate the geometric strength of measurements.
 - Test practicality and performance of technique against high-quality CHAMP conventional dynamic orbit solutions.

CHAMP SATELLITE AND SAMPLE GROUNDTRACK

02/06/23 S.Bisnath

- Near-circular, polar orbit
- → Altitude \approx 450 km
- > Orbital Period \approx 90 minutes

Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick

- > Measurement gaps in CHAMP RINEX files.
- > Poor quality measurements at low elevation angles rapid degradation.
- Periods of unexpected behaviour in all tracked carrier-phase observables.
- > Entire carrier-phase outlier arcs.
- Individual epochs of single carrier-phase measurement outliers not related to cycle-slips.
- Periods of unexpected behaviour in all tracked pseudorange observables.
- Entire pseudorange outlier arcs.
- > Data gaps in IGS precise GPS clock offset estimate files.
- Given all of these measurement outliers, a great deal of pre- and postprocessing must be carried out.

MEASUREMENT QUALITY ANOMALIES: EXAMPLES

02/06/23 S.Bisnath

DATA AVAILABILITY

PROCESSING SOLUTIONS: CODE-ONLY, FILTERED AND SMOOTHED

Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick

02/06/23 S.Bisnath

POST-FIT RESIDUALS

r.m.s.
98.1
2.1

02/06/23 S.Bisnath

ORBIT SOLUTION COMPARISON: DYNAMIC JPL AND DYNAMIC GFZ (24 HRS)

02/06/23 S.Bisnath

ORBIT SOLUTION COMPARISON: GEOMETRIC UNB AND DYNAMIC JPL (24 HRS)

02/06/23 S.Bisnath

ORBIT SOLUTION COMPARISON: GEOMETRIC UNB AND DYNAMIC JPL (4 HRS)

02/06/23 S.Bisnath

- ➢ Kinematic, sequential least-squares filter described.
- > Dynamics-free nature of filter allows for application to any platform.
- Near-decimetre position component r.m.s difference between UNB geometric solutions and dynamic solutions in the along-track and cross-track components.
- Comparison in radial component at the few-decimetre r.m.s. level.
- Very low processing costs few minutes of processing time with only CHAMP GPS measurements and RINEX GPS ephemeris and clock data versus hours with conventional dynamic processing.

- Process additional CHAMP data.
- > Improve stochastic models in filter.
- Add some form of residual analysis to remove remaining measurement outliers.
- Simulate real-time processing with IGS predicted GPS ephemeris and clock products.