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Introduction 
 
The Canadian Hydrographic Service (CHS) in collaboration with the Canadian Coast Guard 
(CCG) is establishing a seamless datum to modernize its bathymetric survey operations. Two 
main aspects of the use of a seamless datum are: 1) the relation between geodetic (ellipsoidal) 
height obtained from GPS and chart datum, and 2) the precise (better than ±10 cm) GPS 
kinematic positioning (particularly the height) of a survey vessel. For example, for the St. 
Lawrence River, which has a 300-km-long navigation channel, this would eliminate the 
installation of more than 70 tide staffs every survey season, which costs more than $250,000 
annually. Besides being out-dated and costly, the use of tide staffs introduces various errors 
associated with water transfer. The 3D GPS positioning (especially the height) of the survey 
vessel provides all the information required to map the profile of the river or sea bed along with 
depth data recorded by echo-sounders. 
 
Problem Statement 
 
It has been a continuing challenge to determine and fix the GPS carrier-phase ambiguities, 
especially for long baselines. Moreover, the challenge is even greater for kinematic GPS 
applications. We have faced just this challenge in processing GPS data collected for 
hydrographic sounding. Generally, the difficulty in solving the ambiguities is due to the 
decorrelation of biases in the GPS observations. As is well known, the GPS observations at the 
base and remote stations will be influenced by different atmospheric effects and satellite orbit 
bias as the baseline length between the stations gets longer [Tiberius et al., 1999]. Furthermore, 
when the pseudorange observations are incorporated with the carrier-phase observations, 
multipath can be the dominant error source that makes it difficult to solve the ambiguities 
because of its quasi-random behaviour over a relatively short time span. In kinematic situations, 
it is not easy to model the observation noise because the dynamics of a moving object may mask 
some aspects of the observation noise which usually can be well modeled statistically by an 
elevation angle dependent function. 
 
Objectives 
 
The objective of the research reported in this paper is to improve the carrier-phase ambiguity 
resolution methods and associated algorithms to achieve more precise and reliable kinematic 
GPS positioning over distances up to, and even longer than, 75 km for the support of bathymetric 
surveys in real time (but not exclusively for bathymetric applications). 
 
Methodology 
 
Which strategy will be preferable for dealing with long baselines and kinematic situations? Is the 
situation different for real-time applications? In our case, the answer is a Kalman filter approach 



combined with an ambiguity search method which can handle the functional and stochastic 
models in an optimal way.  
 
Kalman Filter Approach 
 
We have found that a Kalman filter approach can efficiently implement quality control schemes 
such as cycle-slip handling (detection, identification and adaptation) and observation noise 
modeling procedures. However, fundamental concerns related to its implementation are: 1) How 
to reduce the number of unknown parameters in the filter state vector? 2) How to ensure the 
observability of the given system model under the rank deficiency condition? 3) Which 
implementation method is efficient? 

 
Basically, the problem is that the number of unknown parameters is much greater than that of the 
observations. This is an inherent problem of carrier-phase applications and turns out to be a 
substantial one in such an approach as ours which tries to estimate all the bias parameters and the 
observation noise (except for the multipath in the carrier-phase observations). To reduce the 
number of unknown parameters, the double differencing scheme is used in our approach. In 
addition, dual-frequency carrier phases (L1 and L2) and code pseudoranges (P1 and P2, or C/A 
and P2) are used to increase observation redundancy. Furthermore, the unknown parameters are 
transformed to ensure the observability of the given system model. A separate Kalman filter is 
implemented for each double-difference time series because its programming and stochastic 
modeling are easier.  
 
Quality Control 
 
We face two problems related to the quality control of the observations when implementing our 
Kalman filter approach. How do we implement a robust cycle-slip (or outlier) handling routine? 
How do we model the observation noise? These problems are especially critical in applications 
requiring real-time, long baseline and kinematic operation. 

 
To overcome the first problem, we use a masking technique based on a logical intersection of 
necessary and sufficient conditions for cycle-slip detection and identification. When a cycle-slip 
happens, we can see a spike in the quadruple-difference (obtained by differencing consecutive 
triple-difference observations) time series (Figure 1a and 1b). This provides a necessary 
condition for cycle-slip identification. As a conventional approach incorporated within a Kalman 
filter, we can use prediction residuals to detect a cycle-slip (Figure 1c). However, this should be 
used carefully because the prediction residuals are very sensitive to the dynamics of a moving 
object and the sampling rate of the observations. As another approach, the ionospheric delay 
estimates can be used (Figure 1d). However, this also should be used carefully because there are 
cases when a cycle-slip cannot be detected such as when cycle slips of the same size (in distance 
units) occur simultaneously on L1 and L2, not to mention the very obvious case when cycle slips 
in both carrier phases cancel each other in the ionosphere-free combination ( 1 1
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Nevertheless, in a wide sense, these two approaches – prediction residuals and ionospheric delay 
estimates – provide sufficient conditions for detecting cycle-slips. 

 



For the observation noise modeling, we have found that the dynamics of a moving object can 
sometime mask the behaviour of the observation noise which otherwise usually can be well 
modeled statistically by an elevation angle dependent function. To overcome this problem, we 
use the quintuple-difference (differencing consecutive quadruple-difference observations after 
deleting cycle-slip spikes) time series to estimate the mean bias and standard deviation (Figure 2). 
In this case, we assume that the effects of the unknown parameters, except the parameter related 
to geometric range (in fact, this parameter reflects the dynamics of a moving object.) and white 
Gaussian observation noise, are removed in the quintuple-difference time series. 

 
Ambiguity Search Process 
 
Using the estimates of the state vector (Figure 3), we can transform the original carrier-phase 
double-difference observations to the other ones to be used at the ambiguity search process. The 
purpose of this transformation is to reduce the number of unknown parameters at the ambiguity 
search step. However, there can be some cost to pay for this transformation (i.e., the observation 
noise is increased and time-correlated). We use an ionosphere-free transformation to reduce this 
cost. As a matter of fact, we have found that the transformed observations are similar to the 
ionosphere-free linear combination but have smaller observation noise. The time-correlated 
observation noise can be estimated using the variance-covariance matrix which is obtained 
adaptively from the Kalman filter. 

 
For the observation equations related to the transformed observations, we assume that carrier-
phase multipath is ignorable and the satellite orbit bias is merged into the white noise when 
modeling the observation noise using the quintuple-difference time series (of course, the second 
assumption is not required if a precise orbit is used.). For the ambiguity search process, we use 
the independent-ambiguity-search approach [Hatch, 1990]. Since there remain four unknown 
parameters in the observation equations after the observations are transformed, we always have 
eight search levels (four search levels for 1 and 2N N , the L1 and L2 ambiguities, respectively) 
regardless of the number of double-difference observations. In this case, the search space may be 
enormous even if a small search window is used. This means that the ambiguity search process 
may be so time-consuming that it is not appropriate for a real-time system. In order to overcome 
this problem, we use an efficient ambiguity search engine, namely OMEGA (Optimal Method 
for Estimating GPS Ambiguities) [Kim and Langley, 1999]. 
 
Results 
 
We have tested our technique using a kinematic data set. The dual-frequency data were recorded 
at a one second sampling interval on board a hydrographic sounding ship at Trois-Rivières, on 
the St. Lawrence River, 130km upstream (southwest) of Québec City, on 22 October 1998 and 
simultaneously at one reference station (Trois-Rivières DGPS) in the Canadian Coast Guard 
(CCG) DGPS and OTF network. 
 
Figure 1 shows the cycle-slip detection and identification procedures. So far, we have found that 
the performance of these procedures is almost perfect as far as cycle-slip detection and 
identification are concerned. However, we have found that cycle-slip adaptation should be 
executed carefully because the ability to detect a slip of one cycle is sensitive to the dynamics of 



a moving object. In Figure 2, we can see an example of how the dynamics of a moving receiver 
can mask the behaviour of the observation noise.  
 
 

Figure 1. Example of cycle-slip detection and identification procedures (PRN15&30): (a) L1 
Quadruple-difference time series; (b) Cycle-slip candidates detected by spikes; (c) Cycle-slip 
candidates detected by the Kalman filter prediction residuals (95% confidence level); (d) Cycle-
slip candidates detected by the ionospheric delay estimates (95% confidence level); and (e) 
Masking results (cycle-slip identification). 
 
 

Figure 2. Observation noise modeling using Quintuple-difference time series. 
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Figure 3. Kalman filter estimates (PRN9&8): (a) Ionospheric-delay; (b) Multipath in C/A 
pseudoranges; and (c) Multipath in P2 pseudoranges. 
 
Figure 3 shows the performance of the Kalman filter. Each parameter estimate includes two 
unknown parameters, i.e., initial (at the start of observations) multipath bias and carrier-phase 
multipath. A more complete description of how the filter operates will be submitted for journal 
publication. 
 
Discussion and Conclusion 
 

We have developed a prototype approach to solve the ambiguity fixing problems. The main 
feature of the technique, which may differ from other approaches, is that the system takes into 
account those problems – the decorrelation of biases, the quasi-random behavior of multipath 
and the observation noise all in kinematic mode – at the same time within the functional and 
stochastic models for the GPS observations. In other words, we do not simply ignore these 
problems and hope their effects are averaged out. Instead, all the bias parameters and the 
observation noise (except multipath in the carrier-phase observations) are estimated while a 
software process for quality control of the observations is proceeding. Our new approach also 
features improved computational efficiency of the ambiguity search process by reducing the 
search space and the use of a new algorithm for the quadratic form of the residuals. 
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