Revised Refractive Index Formulae and Their Effect in Zenith Delay Prediction and Estimation

Virgílio B. Mendes(1) and Richard B. Langley(2)

(1)LATTEX and Departamento de Matemática
Faculdade de Ciências da Universidade de Lisboa, Portugal (vmendes@fc.ul.pt)

(2)Geodetic Research Laboratory
Department of Geodesy and Geomatics Engineering, University of New Brunswick
Fredericton, N.B., Canada (lang@unb.ca)

Position Location and Navigation Symposium 2002
Palm Springs • 15-18 April 2002
Outline

• Atmospheric refraction
• Refractivity
• Zenith atmospheric propagation delay
• Impact of refractivity computation
• Impact of saturation vapour pressure computation
• Conclusions
Atmospheric Refraction

$$\tau = \int_{s}^{S} \frac{1}{v} dS$$

- Ionosphere
- Stratosphere
- Tropopause
- Troposphere
- Thermosphere

LatteX and Departamento de Matemática • Faculdade de Ciências da Universidade de Lisboa
Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick
Refractive Index

- Refractive Index \((n)\) – ratio of the speed of propagation of an EM wave in a vacuum \((c)\) to the phase speed of propagation in a given medium \((v)\)
- \(v\) less than \(c\) \(\Rightarrow\) excess path delay
- \(n\) variable throughout the atmosphere \(\Rightarrow\) ray bending
- Refractivity \((N)\): \[N = (n - 1) \times 10^6 \]
Refractivity - I

\[N = K_1 \frac{P_d^*}{T} + K_2 \frac{e}{T} + K_3 \frac{e}{T^2} + K_4 \frac{P_c}{T} \]

- \(K_i \) : refractivity constants (determined in a laboratory)
- \(P_d^* \) : partial pressure due to dry air (CO₂-free)
- \(P_d \) : partial pressure due to dry air (including CO₂)
- \(e \) : partial pressure due to water vapour
- \(P_c \) : partial pressure due to CO₂
- \(T \) : temperature
Refractivity - II

\[N = K_1 \left(\frac{P_d}{T} \right) Z_d^{-1} + \left[K_2 \frac{e}{T} + K_3 \frac{e}{T^2} \right] Z_w^{-1} \]

dry

\[N = K_1 R_d \rho + \left[K'_2 \frac{e}{T} + K_3 \frac{e}{T^2} \right] Z_w^{-1} \]

hydrostatic non-hydrostatic ("wet")
Refractivity - III

\[Z_d^{-1} \text{ inverse compressibility factor for dry air} \]

\[Z_w^{-1} \text{ inverse compressibility factor for water vapor} \]

\[K'_2 = K_2 - K_1 \left(\frac{R_d}{R_w} \right) \]

\[R_d \text{ – specific gas constant for dry air (} R_d = 287.0586 \pm 0.0055 \text{ J kg}^{-1} \text{ K}^{-1} \)\]

\[R_w \text{ – specific gas constant for water vapor (} R_w = 461.525 \pm 0.013 \text{ J kg}^{-1} \text{ K}^{-1} \)\]

\[\rho \text{ – density for dry air} \]
Neutral Atmosphere Delay

\[d_{na} = d^z_h \cdot m_h(\varepsilon) + d^z_{nh} \cdot m_{nh}(\varepsilon) \]

Hydrostatic mapping function

- Zenith hydrostatic delay

Non-hydrostatic ("wet") mapping function

- Zenith non-hydrostatic ("wet") delay
Zenith Propagation Delay

$$d^z_{na} = \int_{z_s}^{r_a} (n - 1) \, dz$$

$$d^z_{na} = 10^{-6} \int_{z_s}^{r_a} N \, dz$$

$${d^z_{na}} = 10^{-6} \int_{z_s}^{r_a} K_1 R d\rho \, dz + 10^{-6} \int_{z_s}^{r_a} \left[K_2 \frac{e}{T} + K_3 \frac{e}{T^2} \right] Z_w^{-1} \, dz$$

zenith hydrostatic delay (ZHD)

zenith non-hydrostatic delay (ZNhD)
Zenith Hydrostatic Delay

\[d^z_h = 10^{-6} \int_{r_s}^{r_a} K_1 R_d \rho \, dz \]

\[\int_{r_s}^{r_a} \rho \, dz = \int_{P_s}^{0} \frac{dP}{g} = \frac{P_s}{g_m} \]

\[
\begin{bmatrix}
\int_{r_s}^{r_a} \rho \, dz = \int_{P_s}^{0} \frac{dP}{g} = \frac{P_s}{g_m} \\
\end{bmatrix}
\]

\[d^z_h = 10^{-6} K_1 R_d \frac{P_s}{g_m} = \zeta \frac{P_s}{f(\phi, H)} \]

- ZHD can be determined accurately if surface pressure measurements are available
- ZHD depends on the choice of \(K_1 \) and \(g_m \)
ZHD Changes for $\Delta K_1 = 0.1 \text{ K hPa}^{-1}$
Zenith Non-hydrostatic Delay

\[d_{nh}^z = 10^{-6} \int_{r_s}^{r_a} \left[K'_2 \frac{e}{T} + K_3 \frac{e}{T^2} \right] Z_w^{-1} \, dz \]

- \(e \) is variable in space and time
- Distribution of water vapour with altitude is not known
- There is no closed solution for the ZNhD
- Effect of changes in refractivity constants can be analyzed by raytracing profiles of \(e \) and \(T \) obtained by radiosondes
Refractivity Constants

<table>
<thead>
<tr>
<th>Formula</th>
<th>(K_1) (K hPa(^{-1}))</th>
<th>(K_2) (K hPa(^{-1}))</th>
<th>(K_3) (K(^2) hPa(^{-1}))</th>
<th>(K_4) (K hPa(^{-1}))</th>
<th>(\zeta) (m hPa(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOUD63</td>
<td>77.594 (±0.075)</td>
<td>71.968 (±10.5)</td>
<td>375406 (±3000)</td>
<td>23.7 (±10.5)</td>
<td>0.0022766 (±0.0000022)</td>
</tr>
<tr>
<td>IAG63</td>
<td>77.624 (–)</td>
<td>64.700 (–)</td>
<td>371897 (–)</td>
<td>16.4 (–)</td>
<td>0.0022775 (–)</td>
</tr>
<tr>
<td>LIEB77</td>
<td>77.676 (±0.023)</td>
<td>71.631 (–)</td>
<td>374656 (–)</td>
<td>23.3 (–)</td>
<td>0.0022790 (–)</td>
</tr>
<tr>
<td>LIEB96</td>
<td>77.640 (±0.023)</td>
<td>71.7 (–)</td>
<td>374670 (–)</td>
<td>23.4 (–)</td>
<td>0.0022779 (–)</td>
</tr>
<tr>
<td>BNB300 (300 ppm CO(_2))</td>
<td>77.691 (±0.013)</td>
<td>71.97 (±10.5)</td>
<td>375406 (±3000)</td>
<td>23.6 (±10.5)</td>
<td>0.0022794 (±0.0000004)</td>
</tr>
<tr>
<td>RUEG375 (375 ppm CO(_2))</td>
<td>77.6890 (±0.0094)</td>
<td>71.2952 (±1.3)</td>
<td>375463 (±760)</td>
<td>23.0 (±1.3)</td>
<td>0.0022794 (±0.0000003)</td>
</tr>
</tbody>
</table>
Radiosonde Locations

- Uccle
- Madrid
- Lhasa
- Tatenos
- Cocos Island
- St. John’s
- San Diego
ZNhD: IAG63 minus LIEB77

Cocos Island

Year

Year

Zenith Non-hydrostatic Delay

IAG63 minus LIEB77 (mm)
ZNhD: IAG63 minus LIEB77

Tateno

![Graph showing ZN
hD: IAG63 minus LIEB77 for Tateno over the years 1997 to 2002, with data points distributed unevenly across the years.]
ZNhD: IAG63 minus LIEB77

Lhasa
ZNhD: IAG63 minus LIEB77

Uccle

Year

Zenith Non-hydrostatic Delay
IAG63 minus LIEB77 (mm)

LATTEX and Departamento de Matemática • Faculdade de Ciências da Universidade de Lisboa
Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick

M&L, 2002
ZNhD: IAG63 minus LIEB77

St. John’s
ZNhD: IAG63 minus LIEB77

San Diego

Zenith Non-hydrostatic Delay
IAG63 minus LIEB77 (mm)

Year

Saturation Vapour Pressure

- Water vapour pressure is computed from RH (or dew point) and saturation vapour pressure (e_{sw}).
- Different formulae for saturation vapour pressure available (Berry, Goff-Gratch, Wexler, Davis, etc.).
- Differences can amount to a few mm in ZNhD computation.
- e_{sw} of moist air $\neq e_{sw}$ of pure water.
 \[\Rightarrow \text{Use of enhancement factor (differences < 1 mm)} \]
e_{sw} Computation

Cocos Island

LATTEX and Departamento de Matemática • Faculdade de Ciências da Universidade de Lisboa
Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick
e_{SW} Computation

Tateno

LATTEX and Departamento de Matemática • Faculdade de Ciências da Universidade de Lisboa
Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick
e_{SW} Computation

St. John’s

LATTEX and Departamento de Matemática • Faculdade de Ciências da Universidade de Lisboa
Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering • University of New Brunswick

M&L, 2002
e_{sw} Computation

San Diego

![Graph showing ZNhD Differences (mm) over the years from 1997 to 2002. The graph includes data points for Berry minus Davis and Goff-Gratch minus Davis, with fluctuations seen throughout the years.]
Concluding Remarks

- A new formula for refractivity computation will have impact in modeling the neutral-atmosphere propagation delay in high-precision applications
- Models for ZHD prediction, such as Saastamoinen, can be easily reformulated to reflect any future recommendation
- Effects in existing models for ZNhD prediction are not significant (below the prediction accuracy)
- A recommendation for the computation of saturation vapour pressure is highly desirable