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An overview of GPS inter-frequency carrier phase combinations. 

By J. Paul Collins, October 1999, UNB/GSD. 

Abstract 

A comprehensive study of the inter-frequency combinations available from dual-
frequency GPS carrier phase observations is presented.  There are three criteria that can 
be examined: 1) the final combination is a ‘widelane’ (with a wavelength greater than the 
L2 frequency); 2) the ionospheric impact is reduced compared to the L1 frequency; and 
3) the noise is reduced compared to the L1 frequency.  All three criteria must be 
examined to deduce the three most common combinations: the widelane, the ionosphere-
free and the narrowlane.  The integer nature of the ionosphere-free ambiguities is 
confirmed.  The amplification of the wavelength of a second combination is discussed, 
along with the so-called ‘odd/even’ relationship and its impact on Teunissen’s [1995] 
hypothesis of the incompatibility of certain double combinations. 

Introduction 

We consider simplified versions of the GPS L1 and L2 carrier phase observations: 

 INL1 −λ+ρ= 11]m[ , ( 1 ) 

 IqNL2 2
22]m[ −λ+ρ= , ( 2 ) 

where ρ represents the geometric quantities invariant with frequency (troposphere, 
clocks, geometric range), λ1/2 is the wavelength associated with each frequency, N1/2 is 
the associated cycle ambiguity, I is the ionospheric propagation delay on the L1 
frequency and q is the ratio of the carrier frequencies f1/f2 = 77/60. The random noise and 
multipath of each measurement are ignored for the moment.  The general expression for a 
combined observation is: 

 L2L1LC β+α=]m[ , ( 3 ) 

which can be expanded explicitly as: 

 )()(]m[ 2
2211 qINNLC β+α−βλ+αλ+β+αρ= . ( 4 ) 

If we wish to impose the constraints that the geometric portion remains unchanged and 
that the resulting ambiguity is still an integer, then we can equate each term with the 
generic expression: 

 η−λ+ρ= INLC ]m[ , ( 5 ) 

to obtain: 
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 ,1=β+α  ( 6a ) 

 ,2211 NNN λ=βλ+αλ  ( 6b ) 

 .)( 2 η=β+α q  ( 6c ) 

Equation ( 6b ) gives an expression for the combined ambiguity: 
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For N to be an integer, then the parameters: 
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must also be integers.  The easiest way to achieve this is to define them as such and then 
re-arrange to compute α and β thus: 
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This result indicates that using the α and β parameters to compute a combination with 
metric units implicitly converts the L1 and L2 measurements into cycles before 
combining them. 

The wavelength of the combination can now be deduced from equation ( 6a ): 
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Substituting the generic relationship λ = c/f, where c is the vacuum speed of light, gives 
the frequency of the combination: 

 21 jfiff += . ( 11 ) 

Given that we are usually concerned with the integer nature of the ambiguities, it 
makes sense to write our observation equations explicitly in units of cycles: 
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and substituting equation ( 9 ) into equation ( 4 ), 
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Using the law of error propagation, the noise of a combination can be expressed as: 
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For a biased error: 
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12 ΦΦ γδ=δ , ( 17 ) 

 
21

]m[ LLLC βδ+αδ=δ  

 
1

)( Lδψβ+α= , if 
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The Widelane Criterion 

We turn now to choosing meaningful values of i and j to obtain useful combinations.  
It is generally recognised that the so-called widelane combinations are useful when trying 
to resolve ambiguities. We shall show that there are only a finite number of widelane 
combinations.  Our derivation is similar to that of Cocard and Geiger [1992]. 

We start by looking at the denominator of equation ( 10 ).  We can set up an 
inequality that maximises the value of λ: 

 2121 0 λ>λ∃>λ+λ>λ∀ ji , ( 19 ) 

i.e. we define a ‘widelane’ as being an observation combination with a resulting 
wavelength greater than the L2 wavelength.  Re-arranging this inequality and using the 
identity q = λ2/λ1 we obtain: 
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 qijqi −>>−1 . ( 20 ) 

The range of this inequality is 1, so unless qi is an integer, something we will discuss in a 
moment, there can only ever be one value of j for any i.  Hence: 

  )( qij −= , ( 21 ) 

where ·  is the integer ceiling function that rounds its argument upward to +∞ (i.e. 
−1.5 = −1). 

Substituting to compute the wavelength directly: 
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This equation allows us to investigate the cyclic relationship that derives from the fact 
that q is not an irrational number, but the quotient of two integers, 77/60.  If we define the 
period P so that λ(i) = λ(i + P), then we have to solve: 

    ))(()()( PiqPiqqiqi +−++=−+ . 

This equation will only be true when qP is an integer, in other words, P = 60.  This 
suggests that the range of i is [1,60], however we must consider one more point.  The 
concept of error propagation implies that the noise of the observation combination 
increases with increasing values of i. It makes sense therefore, to minimise the absolute 
values of i, such that i ∈ ℑ[−29,30] ≠ 0.  Figure 1 plots the wavelengths of all the 
possible combinations chosen in this way.  Unfortunately not all are linearly independent 
from one another –– some values of i and j can be divided, without remainder, by a 
common integer.  The final list of independent widelanes is given in Table 1. 

Table 2 summarises all the possible widelane combinations for which the index i lies 
in the range ±10.  The wavelength for each combination is given, along with its ratio to 
the L1 wavelength.  This indicates by how much the geometric portion of the L1 
observation is reduced in the combined observation.  The amplification of the noise, 
ionosphere and multipath are given in units of cycles and length.  The noise is propagated 
as a random error; the ionosphere and multipath are propagated as biases.  The noise of 
L2 is not considered to be equal to L1, as is often assumed.  The κ factor in equation 
( 15 ) was computed from some dual-frequency data collected with a Trimble geodetic 
receiver over a short baseline.  As such, it contains a certain multipath component, but 
this is acceptable for our purposes.  The ionospheric factor in cycles is computed using 
equation ( 17 ) with γ = q (c.f. equation ( 14 )).  The equivalent factor in length units (υ) 
is simply η in equation ( 6c ).  The multipath is considered to exhibit the maximum bias 
possible, i.e. a full quarter-cycle simultaneously on both L1 and L2 [Georgiadou and 
Kleusberg, 1988].  To compute the in-phase maximum, the absolute values of indices i 
and j are used in equation ( 17 ) with γ = 1.  For the multipath in length units, ψ = q.  
These values can therefore be considered as an upper limit. 
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Figure 1. GPS carrier phase combinations with widelane wavelengths.  
Combinations represented with open circles are not independent. 

(After Cocard and Geiger, [1992]) 

Table 1.  Independent widelane combinations. 
(After Cocard and Geiger [1992] who were missing (4,−5).) 

i j λ(cm) i j λ(cm) i j λ(cm) 
−29 38 31.2 −8 11 33.3 13 −16 35.7 
−27 35 69.8 −7 9 1465.3 14 −17 25.3 
−25 33 26.6 −5 7 41.9 15 −19 97.7 
−24 31 122.1 −3 4 162.8 17 −21 29.9 
−23 30 50.5 −2 3 56.4 18 −23 244.2 
−22 29 31.9 −1 2 34.1 19 −24 63.7 
−19 25 39.6 1 −1 86.2 21 −26 25.7 
−17 22 133.2 4 −5 183.2 23 −29 47.3 
−16 21 52.3 5 −6 58.6 25 −32 293.1 
−13 17 77.1 6 −7 34.9 26 −33 66.6 
−11 15 27.6 7 −8 24.8 27 −34 37.6 
−10 13 146.5 9 −11 44.4 29 −37 112.7 

   11 −14 209.3    
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Table 2.  Widelane combination characteristics. 

Amplification (cycles) Amplification (length) 
LC i j α β λLC λ1/λLC 

Noise ion |mp| noise ion |mp| 

L1 1 0 1 0 19.0 1 1 1 0.25 1 1 1 
L2 0 1 0 1 24.4 0.78 1.17 1.28 0.25 1.5 1.6 1.28 

WL 1 -1 4.5294 -3.5294 86.2 0.22 1.54 -0.28 0.50 7.0 -1.3 9.06 
W1 -1 2 -1.7907 2.7907 34.1 0.56 2.54 1.57 0.75 4.6 2.8 5.37 
W2 -2 3 -5.9231 6.9231 56.4 0.34 4.04 1.85 1.25 12.0 5.5 14.81 
W3 -3 4 -25.6667 26.6667 162.8 0.12 5.56 2.13 1.75 47.5 18.3 59.89 
W4 4 -5 38.5 -37.5 183.2 0.10 7.08 -2.42 2.25 68.2 -23.3 86.63 

 5 -6 15.4 -14.4 58.6 0.32 8.61 -2.70 2.75 26.5 -8.3 33.88 
 -5 7 -11 12 41.9 0.45 9.59 3.98 3.00 21.1 8.8 26.40 
 6 -7 11 -10 34.9 0.55 10.15 -2.98 3.25 18.6 -5.5 23.83 
 7 -8 9.1356 -8.1356 24.8 0.77 11.68 -3.27 3.75 15.2 -4.3 19.58 

EW -7 9 -539 540 1465.3 0.01 12.64 4.55 4.00 972.9 350.4 1232.0 
 -8 11 -14 15 33.3 0.57 15.14 6.12 4.75 26.5 10.7 33.25 
 9 -11 21 -20 44.4 0.43 15.69 -5.12 5.00 36.6 -11.9 46.67 
 -10 13 -77 78 146.5 0.13 18.19 6.68 5.75 140.1 51.5 177.10 

 

Those combinations that have appeared in the literature previously are labelled in 
Table 2 with a two-character code in column 1.  Of these labels, only ‘WL’ is commonly 
used (and not universally, the Berne group uses L5, see e.g., Beutler et al. [1990]).  Of the 
other combinations, the extra-widelane combination (EW) has received some recent 
attention [Han and Rizos, 1995; Han, 1995; Han, 1997], as have W1–W4 to a lesser 
extent [e.g., Han and Rizos, 1996]. 

Other Criteria (1) 

Considering again the denominator in equation ( 10 ) we can see that: 

 2112 λ≤λ∃λ≥λ+λ∀ ji , ( 23 ) 

i.e., there are an infinite number of narrowlane combinations.  To determine further 
useful combinations, we must therefore examine some other criteria that the combined 
observation can fulfil.  The most straightforward criterion is to reduce the ionospheric 
path delay.  By considering our generalised observation equation in units of cycles 
(equation ( 14 )), we can see that to reduce the amount of ionosphere over that 
experienced on the L1 frequency, the following inequality must hold. 

1<+ jqi , 

or in terms of j: 
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which is in a form similar to equation ( 20 ).  The range of this inequality is ∼1.56, 
indicating that there can be two integer values of j for some values of i.  We should note 
that equation ( 24 ) is not limited to narrowlane combinations.  To compute values of j: 
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where ·  is the integer floor function that rounds its argument downward to −∞ (i.e. 
−1.5 = −2). 

Substituting these functions of j into equation ( 10 ) gives: 
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Unlike the widelane combinations, there is no cyclic variation, because there are an 
unlimited number of choices for the index i.  Even discarding common multiples, there 
will always be a prime number to use for i.  However, the combination i = 77, 
jA = jB = −60, sets the ionospheric factor to zero, which suggests that there is no more 
information to be gained from going beyond this point.  At the same time, negative 
values of i give only negative wavelengths.  Therefore, we will only consider i ∈ ℑ[1,77]. 

Figure 2 plots the values of the ionosphere factor (i + jq) against the chosen range of 
i.  The upper portion of the plot shows the values of jB, the lower portion jA.  As in Figure 
1, the combinations that are common multiples have been represented with open symbols.  
Table 3 reveals that all but one of these combinations is a narrowlane combination except 
for λ(i = 1), which is the WL widelane combination (1,−1).  This result helps to clarify the 
importance of this particular combination.  Of all the possible combinations from dual-
frequency GPS carrier phase measurements, it is the only one that is both a widelane and 
reduces the impact of the ionosphere. 

A summary of some of the reduced-ionosphere combinations is given in Table 4.  The 
entries for this table were computed in the same way as for the widelane summary (Table 
2).  Only those combinations for which i ∈ ℑ[2,10] are shown, along with the (77,−60) 
combination. 
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Figure 2. GPS carrier phase combinations with ionospheric factors less than 1.  
Combinations represented with open symbols are not independent. 

Table 3.  Independent reduced-ionosphere combinations. 

i j λ(cm) i j λ(cm) i j λ(cm) 
1 –1 86.2 25 –19 1.9 52 –41 0.9 
2 –1 15.6 26 –21 2.0 53 –41 0.9 
3 –2 13.2 29 –22 1.6 53 –42 0.9 
4 –3 11.4 29 –23 1.7 55 –43 0.9 
5 –4 10.1 30 –23 1.6 56 –43 0.8 
6 –5 9.0 31 –24 1.5 57 –44 0.8 
7 –5 6.1 32 –25 1.5 58 –45 0.8 
7 –6 8.2 33 –25 1.4 59 –46 0.8 
8 –7 7.5 33 –26 1.5 60 –47 0.8 
9 –7 5.4 34 –27 1.5 61 –47 0.8 

11 –8 4.0 35 –27 1.4 61 –48 0.8 
11 –9 4.8 37 –29 1.3 62 –49 0.8 
13 –10 3.7 38 –29 1.2 65 –51 0.8 
14 –11 3.5 39 –31 1.3 67 –52 0.7 
15 –11 3.0 40 –31 1.2 68 –53 0.7 
16 –13 3.2 41 –32 1.2 69 –53 0.7 
17 –13 2.8 43 –33 1.1 71 –55 0.7 
17 –14 3.1 43 –34 1.2 71 –56 0.7 
19 –15 2.6 44 –35 1.1 73 –57 0.7 
21 –16 2.2 47 –36 1.0 74 –57 0.6 
21 –17 2.5 47 –37 1.0 75 –58 0.6 
22 –17 2.2 48 –37 1.0 75 –59 0.7 
23 –18 2.1 49 –38 1.0 76 –59 0.6 
24 –19 2.1 50 –39 1.0 77 –60 0.6 

   51 –40 1.0    
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Table 4.  Reduced-ionosphere combination characteristics. 

Amplification (cycles) Amplification (length) 
LC i j α β λLC λ1/λLC 

noise ion |mp| noise ion |mp| 

L1 1 0 1 0 19.0 1 1 1 0.25 1 1 1 
L2 0 1 0 1 24.4 0.78 1.17 1.28 0.25 1.5 1.6 1.28 

 2 -1 1.6383 -0.6383 15.6 1.22 2.32 0.72 0.75 1.9 0.6 2.46 
 3 -2 2.0811 -1.0811 13.2 1.44 3.80 0.43 1.25 2.6 0.3 3.47 

N1 4 -3 2.4063 -1.4063 11.4 1.66 5.32 0.15 1.75 3.2 0.1 4.21 
N2 5 -4 2.6552 -1.6552 10.1 1.88 6.85 -0.13 2.25 3.6 -0.1 4.78 

 6 -5 2.8519 -1.8519 9.0 2.10 8.38 -0.42 2.75 4.0 -0.2 5.23 
 7 -5 2.2552 -1.2552 6.1 3.10 9.12 0.58 3.00 2.9 0.2 3.87 
 7 -6 3.0112 -2.0112 8.2 2.32 9.91 -0.70 3.25 4.3 -0.3 5.59 
 8 -7 3.1429 -2.1429 7.5 2.55 11.44 -0.98 3.75 4.5 -0.4 5.89 

EN 9 -7 2.5385 -1.5385 5.4 3.55 12.16 0.017 4.00 3.4 0.005 4.51 
IF 77 -60 2.5457 -1.5457 0.6 30.25 104.15 0 34.25 3.4 0 4.53 

 

The combinations in Table 4 denoted as ‘N1’ and ‘N2’ have been investigated 
previously due to their combination of ionosphere-reduction properties and reasonable 
wavelengths [Wübbena, 1989; Wanninger, 1991].  Of all the reduced-ionosphere 
combinations, these two are the best in this regard, and most of the others are included for 
the sake of completeness and curiosity.  In the latter category is the combination denoted 
‘EN’, for extra-narrowlane.  As far as this author knows, this combination has not been 
discussed previously in the open literature.  This is unusual, because it almost completely 
removes the ionospheric impact and yet has a wavelength almost 10 times longer than the 
‘completely’ ionosphere-free combination (77,−60) denoted here as ‘IF’.  The noise and 
multipath factors are almost the same as the IF combination (compare their respective α 
and β values), yet the longer wavelength might allow for the ambiguities to be solved 
directly under some circumstances.  Depending on the amount of ionospheric delay 
experienced, this would give a solution with almost identical statistical results to an IF 
solution, but precluding the initial step of resolving the widelane ambiguities (more about 
that shortly). 

At this point it is particularly instructive to consider the IF combination (77,−60) 
more closely.  It is often stated in the literature that the ambiguity parameter in this 
combination is not an integer value.  It should be obvious from our derivation that it is.  
The problem with this combination is that the effective wavelength is drastically reduced 
compared to L1 and L2.  This greatly amplifies the observation noise in terms of cycles 
and makes direct resolution of the IF ambiguities almost impossible. 

Other Criteria (2) 

Finally, we must realise that the last commonly referred to combination has not so far 
turned up in our investigation.  This is the combination (1,1), often referred to simply as 
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the ‘narrowlane’.  It has the unusual property of reducing the noise (in terms of length 
units).  There are obviously no values of i and j that satisfy the inequality: 

 122 <+ ji , ( 28 ) 

however, the inequality: 

 1âá 22 <+ , ( 29 ) 

is another matter.  Note that for the moment we consider the noise of L2 to be equal to 
that of L1.  The minimum value of equation ( 29 ) is √½ ≈ 0.71 (α = β = 0.5), i.e. we 
cannot expect a great reduction in the noise and it must be at the expense of some other 
quantity.  In this case there is a reduction in the wavelength over L1, i.e. all the solutions 
to equation ( 29 ) must be narrowlanes.  It turns out that the solutions to equation ( 29 ) 
exist only for values of i and j ≥ 1.  Only those unique combinations with a wavelength ≥ 
5cm are summarised in Table 5. 

Table 5.  Noise-reduction combination characteristics. 

Amplification (cycles) Amplification (length) 
LC i j α β λLC λ1/λLC 

noise ion |mp| noise ion |mp| 

L1 1 0 1 0 19.0 1 1 1 0.25 1 1 1 
L2 0 1 0 1 24.4 0.78 1.17 1.28 0.25 1.5 (1) 1.6 1.28 

NL 1 1 0.5620 0.4380 10.7 1.78 1.54 2.28 0.50 0.86 (0.71) 1.3 1.12 
 1 2 0.3909 0.6091 7.4 2.56 2.54 3.57 0.75 0.99 (0.72) 1.4 1.17 

N3 2 1 0.7196 0.2804 6.8 2.78 2.32 3.28 0.75 0.83 (0.77) 1.2 1.08 
 1 3 0.2996 0.7004 5.7 3.34 3.65 4.85 1.00 1.09 (0.76) 1.5 1.20 

N4 3 1 0.7938 0.2062 5.0 3.78 3.22 4.28 1.00 0.85 (0.82) 1.1 1.06 

 

The entries for Table 5 were computed in the same manner as the previous two 
summaries.  The only exception is for the noise factors in length units.  The values in 
brackets are the results from setting the L2 observation noise equal to that of L1.  We 
have chosen to highlight combinations ‘N3’ and ‘N4’ only because they minimise the 
contribution of the L2 noise and the combined multipath.  The generic narrowlane 
combination i = 1, j = 1 is denoted ‘NL’. 

Resolving Ambiguities 

The ionosphere-free nature of the IF combination is obviously a very desirable 
property, unfortunately the very short wavelength and comparatively large noise 
generally means that the numerical value of the ambiguities cannot be estimated directly.  
It is possible to fix the ambiguities indirectly however, by first fixing the ambiguities of 
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another combination.  If we considering the general case of two combinations with 
integer ambiguities Ni,j and Nk,l, where: 

 Ni,j = iN1 + jN2 , ( 30 ) 

 and Nk,l = kN1 + lN2 , ( 31 ) 

we can rewrite the first combination in terms of N2 and substitute the result into the 
second combination to obtain: 

 jilk N
j

l
N

j

l
ikN ,1, )( +−= . ( 32 ) 

In terms of the widelane (Ni,j = N1,-1) and ionosphere-free combinations (Nk,l = N77,-60): 

 N77,-60 = 17N1 + 60N1,-1 . ( 33 ) 

Multiplying both sides of this equation by λ77,-60 makes it equivalent to equation ( 6b ).  
In other words, resolving the widelane ambiguities and substituting them into the IF 
combination reduces the IF ambiguities to the L1 ambiguities while amplifying the 
wavelength by a factor of 17 (to 10.7cm).  This can then often allow the L1 ambiguities 
to be solved for directly.  As a downside, these L1 ambiguities are very sensitive to 
incorrect widelane ambiguities (60λ77,-60 = 37.8cm).  However, as a check on the original 
widelane determination, the L1 ambiguities can be substituted back into the ionosphere-
free combination to amplify the wavelength by a factor of 60 and isolate the L2 
ambiguities: 

 N77,-60 = 77N1 – 60N2 ; N1 = 0 ⇒ N77,-60 = 60N2 . ( 34 ) 

The amplification factors and effective wavelengths available after resolving the 
widelane ambiguities are summarised in Table 6. Table 7 summarises the combinations 
affected by resolving the narrowlane (NL) ambiguities.  The amplified widelane in this 
case (effective wavelength = 172.4cm), is the “extra wide lane” referred to by Wübbena 
[1988,1989].  The wavelength for the ionosphere-free combination is amplified even 
further by resolving the narrowlane combination.  However, it is hard to imagine when 
this might be effective, due to either the necessity of overcoming the ionosphere when 
resolving the narrowlane ambiguities in the first place, or the redundancy of the option 
over short baselines where the effect should largely cancel.  Nevertheless, should 
observable noise be a larger consideration than the ionosphere, the use of the widelane 
and narrowlane combinations (as the least noisy of all the possible combinations) should 
prove useful. 
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Table 6.  Amplification factors and effective wavelengths of combinations affected 
by resolving the widelane (WL) ambiguities. 

LC EW NL N3 N4 EN IF 
factor 2 2 3 4 2 17 
λ(cm) 2930.5 21.4 20.5 20.1 10.7 10.7 

Table 7.  Amplification factors and effective wavelengths of combinations affected 
by resolving the narrowlane (NL) ambiguities. 

LC WL W1 W2 W3 W4 EW N1 N2 N4 EN IF 

factor 2 -3 -5 -7 9 -16 7 9 2 16 137 

λ(cm) 172.4 -102.2 -281.8 -1139.6 1648.4 -23444.2 80.1 90.9 10.1 85.9 86.2 

 

Admissible Transformations to L1 and L2 

Teunissen [1995] has implied that there are only a limited number of admissible 
transformations that unambiguously determine the L1 and L2 ambiguities from two linear 
combinations.  One apparent consequence is that the widelane and narrowlane can not be 
paired together.  This hypothesis is based on the following transformation: 
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which is merely equations ( 30 ) and ( 31 ) in matrix form.  To guarantee a one-to-one 
reverse transformation, that is that N1 and N2 must always be integers given that Ni,j and 
Nk,l are integers, the inverse of the transformation matrix must have only integer 
components, i.e. in: 
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the determinant il – jk must equal ±1.  For the widelane and narrowlane combinations the 
reverse transformation is: 
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An example is given in Teunissen [1995] of N1,1 = 1 and N1,-1 = 0, for which non-integer 
values of N1 and N2 result.  Unfortunately, there is a slight fallacy here.  What this result 
means is that either N1,1 or N1,-1 have been incorrectly determined, not that the 
transformation is inadmissible per se.  This fact is obvious from the odd/even law which 
states [Wübbena, 1988]: 
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if N1,-1 is even, N1,1 has to be even, and 

if N1,-1 is odd, N1,1 has to be odd. 

Hence, the above transformation should not be attempted before trying to determine 
which value of N1,1 or N1,-1 is incorrect.  For example, if the float value of N1,-1 in the 
previous example was 0.4, the value of 1 is more likely to be the true integer value.  
Table 8 indicates those combinations that combine to form “admissible” transformations 
according to Teunissen [1995].  The odd/even law governs none of these double 
combinations, and the guarantee of achieving a one-to-one transformation to N1 and N2 is 
of little use if either one or both of the combination ambiguities is incorrectly determined.  
While ambiguity fixing is an inexact science at best, this latter point indicates that the 
double combinations highlighted with a ‘Y’ in Table 8 should probably be avoided. 

The applicability of the odd/even law is also indicated by the determinant of the 
transformation matrix.  In general, the odd or even pattern of the N1 and N2 values must 
be preserved or equally translated to the combinations.  In effect, either the N1 or N2 
factors (i and k or j and l) can be even, or either all the factors must be odd.  It is not 
possible for all of them to be even because that would imply non-independent 
combinations.  The result is that the determinant il – jk must be even.  Table 8 highlights 
those double combinations examined in this paper that conform to the odd/even law.  Of 
course, all these combinations and the remaining combinations are constrained by the fact 
that non-integer results for N1 and/or N2 indicate incorrect determination of Nij and/or Nkl. 

Table 8.  Admissible double combinations according to Teunissen [1995] (Y) 
and double combinations that comply with the odd/even law (*). 

   WL W1 W2 W3 W4 EW NL N1 N2 N3 N4 EN IF 

 LC  1 -1 -2 -3 4 -7 1 4 5 2 3 9 77 

   -1 2 3 4 -5 9 1 -3 -4 1 1 -7 -60 

WL 1 -1  Y Y Y Y * * Y Y  * *  

W1 -1 2 Y  Y *     *    * 

W2 -2 3 Y Y  Y *   *  *    

W3 -3 4 Y * Y  Y Y   *    * 

W4 4 -5 Y  * Y  Y  *  *    

EW -7 9 *   Y Y  *    * *  

NL 1 1 *     *    Y * *  

N1 4 -3 Y  *  *    Y *  Y  

N2 5 -4 Y *  *    Y    Y * 

N3 2 1   *  *  Y *   Y   

N4 3 1 *     * *   Y  *  

EN 9 -7 *     * * Y Y  *  Y 
IF 77 -60  *  *     *   Y  

 



14 

Conclusions 

This paper has attempted to provide a comprehensive overview of the possible 
combinations available from dual-frequency GPS carrier-phase observations.  All of the 
combinations have been constrained to integer ambiguities.  The integer nature of the 
ionosphere-free ambiguities has been confirmed.  Because all the combinations are 
implicitly derived from the separate L1 and L2 observations, there is always an 
admissible reverse transformation of a pair of combinations back to L1 and L2.  The 
failure of such a transformation (i.e. non-integer ambiguities) indicates an incorrect 
determination of the combination ambiguities.  However, several pairs of combinations 
will always give integer values due to the determinant of the transformation matrix being 
unity.  This suggests that their use should be avoided. 
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