
"Innovation" is a regular column in GPS 
World featuring discussions on recent 
advances in GPS technology and its 
applications as well as on the fundamentals 
of GPS positioning. This month we look at 
some of the mathematics involved in 
determining a position using GPS 
pseudorange measurements. We also 
examine some of the ways of gauging the 
accuracy of GPS positions. 

This column is coordinated by Richard 
Langley and Alfred Kleusberg of the 
Department of Surveying Engineering at the 
University of New Brunswick. We very much 
welcome your comments and suggestions of 
topics for future columns. 

Smart engines, smart ovens, smart cameras. 
We live in a world of microprocessor-con­
trolled devices that function with a high de­
gree of reliability with little control or 
thought on the part of the consumer. 

Not so many years ago, amateur photog­
raphers had to know something about film 
speeds, f-stop and shutter-speed reciprocity, 
and the absorption and reflection of light in 
order to take consistently good pictures. 
They had to manually adjust the controls on 
the camera to match the lighting conditions 
and, of course, focus the lens. With the cam­
eras available today, they just have to point 
and shoot. 

If a good picture isn't possible under the 
existing lighting conditions, the camera will 
complain with a beep and may even refuse 
to take the picture unless switched over to 
manual operation. Photographers no longer 
must think carefully about the physical pro-
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cess of capturing the image - they can de­
vote all of their talents to the composition of 
the picture. 

Something of the challenge of photogra­
phy has clearly been lost in this evolution of 
the machine/operator relationship. Neverthe­
less, thinking people will continue to be in­
trigued by the photographic process and will 
want to have at least a basic understanding of 
how a camera is able to capture an image on 
a piece of plastic coated with silver halide 
crystals - and how that process can be con­
trolled. So it is with GPS. 

The GPS receiver is the latest in a length­
ening line of smart machines. In the January 
1991 issue of GPS World, we looked at how 
a GPS receiver works but glossed over how 
the measurements are converted into posi­
tions by the microprocessor. Let's take a 
look at that now. 

DETERMINING POSITIONS FROM 
PSEUDORANGES 
The basic measurement made by a GPS re­
ceiver is the time required for a signal to 
propagate from a GPS satellite to the re­
ceiver. Because the signal travels at the 
speed of light, c, this time interval can be con­
verted to a distance simply by multiplying it 
by c. 

Let's assume that the clock in thereceiver 
is synchronized with the clock in the satel­
lite, and that the ionosphere and troposphere, 
which slightly delay the arrival of the signal, 
do not exist. Furthermore, let's assume there 
is no measurement noise, that is, no random 
perturbation to the measurement, something 
that invariably affects all measurements to a 
greater or lesser degree. With a single such 
measurement of the distance or range to the 
satellite, we can determine something about 
the position of the receiver: it must lie some­
where on a sphere centered on the satellite 
with a radius equal to the measured range, as 
illustrated in the first frame of Figure 1. 
Let's call that distance p 1• 
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If we simultaneously make a range mea­
surement to a second satellite, then our re­
ceiver must also lie on a sphere, of radius p2, 

centered on this satellite. The two spheres 
will intersect, as shown in the second frame 
of Figure 1, with the locus of intersection 
points forming a circle. Our receiver must lie 
somewhere on this circle, which is called a 
line of position. A third simultaneous range 
measurement, p3, gives us a third sphere that 
intersects the other two at two points only, il-

a) 

b) 

c) 

Figure 1. With synchronized clocks, si­
multaneous range measurements to 
three GPS satellites produce a determina­
tion of a receiver's position. Each range 
measurement can be portrayed as the 
radius, p, of a sphere centered on a par­
ticular satellite, with the intersections of 
additional spheres producing ever fewer 
possible points of receiver location. The 
line of position is represented in b) and c) 
by the perimeter of the shaded area. 

Comment
While the formation of the peudorange equations as given in Figure 3 is self-consistent, it is more common to add the c dT term to the righthand side rather than subtracting it.

Although it is standard to linearize the pseudorange equations to obtain a solution, researchers have developed algorithms to directly solve the case of observations from only four satellites without linearization. Application of such an algorithm to cases involving more than four satellites to give a least-squares-like solution is also possible.

Although DoD has the capability to intentionally degrade the ephemeris information in the navigation message as part of selective availability (SA) along with satellite clock dithering, there is no evidence that it has used this SA component operationally. SA was set to zero by presidential order on 2 May 2000.

While it is true that the larger the tetrahedron formed by the four receiver-satellite unit vectors, the smaller the dilution of precision (DOP), the DOP values are only approximately inversely proportional to the tetrahedron volume.

The definition of standard deviation omits mention of the need to compute the mean of the errors and then to subtract this mean from the errors before summing their squares. It is only when the mean error is known to be zero, that the standard deviation and the root-mean-square error are the same.
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Figure 2. Determination of receiver 
clock offset (dT) and true user position 
(intersection of shaded lines) from the in­
tersection of spheres centered on the sat­
ellites; pseudoranges are shown by arcs 
of solid lines 

Figure 3. The set of basic equations 
for determining user position and re­
ceiver clock offset from four pseudorange 
measurements 

lustrated in the third frame of Figure 1. One 
of these points can be dismissed immediately 
as being the location of our receiver because 
it will lie far out in space. So, the simulta­
neous measurement of the ranges to three 
satellites provides sufficient information to de­
termine a position fix in three dimensions -
at least in principle. 

When we started our analysis, we as­
sumed that the clock in the GPS receiver was 
synchronized with the clocks in the satellites. 
This assumption, however, is fallacious. 
When a GPS receiver is switched on, its 
clock will, in general, be mis-synchronized 
by an unknown amount with respect to the sat­
ellite clocks. Furthermore, the atomic clocks 
in the satellites are synchronized with each 
other and to a master time scale - called 
GPS time - only to within about a millisec­
ond. The range measurements the receiver 

makes are biased by the receiver and satel­
lite clock errors and therefore are referred to 
as pseudoranges. 

A timing error of a millisecond would re­
sult in an error in position of about 300 
kilometers, clearly an intolerable amount. Sys­
tem operators conceivably could better syn­
chronize the satellite clocks by frequently 
sending them adjustment commands from 
the ground, but atomic clocks have been 
found to actually keep better time if they are 
left alone and their readings are corrected. 
The United States Naval Observatory moni­
tors the GPS satellite clocks and determines 
the offsets and drifts with respect to GPS 
time. These parameters subsequently are 
uploaded to the satellites and transmitted as 
part of the navigation message broadcast by 
the satellites. A GPS receiver uses these sat­
ellite clock offset values to correct the mea­
sured pseudoranges. 

Nonetheless, we still have the receiver 
clock error to deal with. Because of this er­
ror, the three spheres with radii equal to the 
measured pseudoranges corrected by the sat­
ellite clock offsets will not intersect at a com­
mon point. However, if the receiver clock 
error, dT, can be determined, then the pseu­
doranges can be corrected and the position of 
the receiver determined. The situation, com­
pressed into two dimensions, is illustrated in 
Figure 2. 

So, we actually have four unknown quan­
tities or parameters that we must determine: 
the three coordinates of our position (say, lati­
tude, longitude, and height) and the receiver 
clock offset. Now, it is mathematically im­
possible to uniquely determine the values of 
four parameters given only three measure­
ments. The way out of this conundrum is to 
measure simultaneously an additional pseu­
dorange to a fourth satellite. 

But just how does the GPS receiver actu­
ally extract the position coordinates and the 
clock offset from the measurements? In the 
software embedded in the GPS receiver is an 
algebraic model that describes the geometri­
cal arrangement we've just looked at. For 
each pseudorange measurement, an equation 
can be written that relates the measurement 
to the unknown quantities. The four equa­
tions are shown in Figure 3. 

The pseudorange measurement made by 
the receiver, in units of distance, is on the 
left-hand side of each of the equations. The 
expression under the square root sign is the 
true range to the satellite. It is actually a rep­
resentation of the sphere centered on coordi­
nates x,y,z, the position of the satellite. The 
satellite coordinates are obtained from the 
navigation message. The coordinates X, Y,Z 

represent the position of the receiver. The 
term c dT is the contribution to the pseu­
dorange from the receiver clock offset, dT. 

The set of four equations must be solved 
simultaneously to obtain the values for X, Y,Z 
together with the clock offset, dT. Although 
the equations are written in terms of geocen­
tric Cartesian coordinates, the resulting 
X,Y,Z values can easily be converted to lati­
tude, longitude, and height in any geodetic da­
tum or into map grid coordinates. 

Linearization of the pseudorange equations. Be­
cause of the squares and square roots in the 
equations, the pseudorange measurements 
are dependent on the receiver coordinates in 
a nonlinear way. Consequently, the equa­
tions cannot be solved in the usual fashion 
we all learned in high school. Instead, a pro­
cedure known as Newton-Raphson iteration 
is used. In this procedure, each of the equa­
tions is expanded into an infinitely long poly­
nomial based on a set of trial values or 
guesses for X, Y,Z and dT. Then each series 
is truncated after the first degree term, result­
ing in an equation that is linear in incre­
mental corrections to the trial values. The 
four linearized equations can then be solved 
simultaneously to determine the values of 
these increments and the trial values adjusted 
accordingly. 

Because the linearized equations are an ap­
proximation of the nonlinear ones, this pro­
cess, in general, must be iterated, with sub­
sequent iterations yielding smaller and 
smaller increments. The final solution is the 
one that satisfies the original nonlinear equa­
tions to within an acceptable tolerance. Sev­
eral iterations may be required to converge to 
the final solution. However, if the initial po­
sition estimate is close to the actual position, 
the GPS pseudorange equations may be 
solved in just one iteration. 

If one or more of the receiver coordinates 
is already accurately known, then the remain­
ing coordinates and the receiver clock offset 
can be determined using fewer than four pseu­
doranges. For example, say that the height 
of the GPS receiver is known. Then pseu­
doranges to three sate IIi tes will suffice to de­
termine the two horizontal coordinates and 
the clock offset. To use GPS to synchronize 
a clock at a site with known coordinates, 
only one pseudorange measurement to a sin­
gle satellite is actually required. 

Inconsistent equations. What happens when 
more than four satellites are above the GPS 
user's horizon? If the user's receiver can 
only track four satellites at a time, then the 
receiver will have to choose which four sat­
ellites to track. We'll have something to say 
about a possible selection method a little 



later on. But if the receiver can track five or 
more satellites simultaneously, then we have 
a situation in which we have more measure­
ments than unknowns; that is, we have five 
or more equations, like those in Figure 3, but 
still have only four unknown parameters. 

We cannot solve such a set of equations in 
the same way as we did for the case of four 
observations. Why? So far we have ne­
glected the fact that there are other errors in 
our measurements in addition to the satellite 
and receiver clock offsets. The presence of 
these errors means that any subset of four 
measurements taken from the full set will 
produce slightly different solutions. In such 
situations, we say that the system of equa­
tions is inconsistent. 

What do we do? We could discard the ex­
tra observations, but, although expedient, 
that seems wasteful of data. The best ap­
proach is to use a method that was devised 
in the early 1800s by the great German mathe­
matician and father of modern geodesy, Karl 

~ Friedrich Gauss - the method of least ~ 
squares. In this method, we obtain a unique 
solution for the unknown parameters that 
best fits all of the measurements. This solu­
tion is the one that, when substituted into the 
right-hand side of the pseudorange equa­
tions, gives the smallest discrepancies with re­
spect to the measurements on the left-hand 
side in a summed squares sense. That is, the 
sum of the squares of the discrepancies is a 
minimum. Without going into the mathemati-
cal reasons for adopting this criterion, we 
can see qualitatively that it assumes that posi­
tive and negative discrepancies are equally 
likely to occur and that smaller discrepancies 
are more likely to occur than larger ones. 

POSITION ACCURACY MEASURES 
As we have mentioned, the pseudorange 
measurements are contaminated by the sate!-

!!ll ~~ ~~1u 
~ 011 
~ o~. ~~~----~~--~~~ 

-4 -3 -2 -1 0 2 3 4 
Error 

Figure 4. The Gaussian probability dis­
tribution function; the shaded area indi­
cates a 68 percent probability of an error 
having a value between -1 a and + 1 a 
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Figure 5. Current global GDOPs; constellation value is the percentage of occur­
rences for which GDOP is ~6 for a global set of sample points averaged over 24 hours 

lite and receiver clock offsets. Even after solv­
ing for the receiver clock offset and correct­
ing the pseudoranges for the satellite clock 
offset using the parameters in the navigation 
message, errors still remain in the measure­
ments. These errors will, of course, affect 
the accuracy of the position determination. Be­
cause these errors will, in general, change 
with time, repeated determinations of the po­
sition of a fixed location will give slightly dif­
ferent results. 

The pseudorange errors come from several 
sources. The parameters in the navigation 
message describing the behavior of the sat­
ellite clock account for almost all of the 
clock offset with respect to GPS time. How­
ever, because the model used to describe the 
clock behavior is quite simple and the parame­
ters of the model are predicted ahead of 
time, there are some small residual clocker­
rors remaining in the pseudoranges. The po­
sitions of the satellites as computed from the 
predicted ephemerides in the navigation mes­
sages are also slightly in error. Other errors 
in the pseudoranges include unmodeled ef­
fects of the ionosphere and troposphere, mul­
tipath, receiver measurement error, and, for 
the civilian user, additional clock and orbiter­
rors due to selective availability (SA) when 
it is in effect. 

User equivalent range error. Each of these er­
rors, regardless of its origin, can be ex-

pressed as an error in the range between the 
user and the satellite. When an error is ex­
pressed in this way, it is known as user 
equivalent range error (UERE) or as just 
user range error (URE). Over a sufficiently 
long period of time, these errors can be con­
sidered to be random in nature, with negative 
and positive errors being about equally prob­
able, giving a mean value of zero. Also, 
smaller errors are more probable than larger 
errors. 

If a graph is drawn of the frequency of oc­
currence of an error of a certain size, a curve 
similar to that shown in Figure 4 will be ob­
tained. Formally, we speak of the curve rep­
resenting a certain probability density func­
tion. The probability that an error will occur 
with a value between specified limits is the 
area under the curve between these limits on 
the horizontal axis. 

The shape of the probability density curve 
depends on the particular parameter being 
measured. However, in science and engineer­
ing the probability density curve is often of 
a particular shape known as a Gaussian or nor­
mal distribution. To quantify such a distribu­
tion or dispersion of possible errors with a sin­
gle number, we use the standard deviation 
and usually represent it by the Greek letter 
sigma (a). We can determine a experimen­
tally by making a large number of observa­
tions and calculating the square root of the 
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Figure 6. A sample of 1 00 normally distributed three-dimensional position errors. 
These artificially generated errors have standard deviations in latitude, longitude, and 
height of 15.2, 29.1, and 29.0 meters, respectively. The correlation between the er­
rors in latitude and longitude is - 0.27; between latitude and height, 0.18; and be­
tween longitude and height, 0.73. Cross-sectional views of the corresponding error 
ellipsoid and the sphere with a radius equal to the SEP (34.2 meters) are shown. Data 
points behind the sphere and some points in its interior are hidden from view. 

sum of the squares of the errors in the obser­
vations divided by one less than the number 
of observations made. It is this method of 
computation that gives a its alias of root­
mean-square (rms) error. 

For the Gaussian distribution, there is a 68 
percent chance that the magnitude of the er­
ror we actually get will be smaller than the 
standard deviation. There is a 95 percent 
chance that it will be smaller than twice the 
standard deviation, and a 99.7 percent 
chance that it will be smaller than thrice the 
standard deviation. 

UERE errors originate from different 
sources and thus are independent of each 
other. However, we can calculate the com­
bined error by taking the square root of the 
sum of the squares of the individual errors. 

This value is the total user equivalent range 
error. 

Dilution of precision. The total UERE is 
clearly not the error in the position deter­
mined by a GPS receiver. UERE is only a 
measure of the error in the distance to one of 
the satellites. To determine the three-dimen­
sional position error, we must also take into 
account where the satellites are in the sky 
with respect to the receiver. This satellite 
geometry - the spacing of satellites from 
which GPS signals are received and the re­
sulting angles between the signal paths - re­
sults in a larger or smaller uncertainty in the 
calculation of position. 

The contribution of relative satellite geom­
etry to errors in position determination is 
known as dilution of precision (DOP) and 

has a multiplicative effect on UERE. Gener­
ally, wider spacing between satellites and the 
receiver produces smaller errors, for reasons 
that will be discussed in a moment. Because 
a GPS receiver user can only obtain GPS 
satellite signals that are not blocked by the 
planet, i.e., that are above the horizon, 
the satellite geometry is already somewhat 
constrained. 

The most common quantification of DOP 
is through the position dilution of precision 
(PDOP) parameter. PDOP is the number 
that, when multiplied by the rms UERE, 
gives the rms position error (the square root 
of the sum of the squares of the standard de­
viations in latitude, longitude, and height). 

PDOP is a mathematical function involv­
ing the relative coordinates of the receiver 
and the satellites and can easily be computed 
for a particular satellite arrangement. PDOP 
using four satellites can also be visualized geo­
metrically by looking at the tetrahedron 
formed by the end points of vectors of unit 
length pointing from the receiver to each of 
the satellites. PDOP is inversely proportional 
to the volume of this tetrahedron. The more 
spread out the satellites are in the sky, the 
larger the volume of the tetrahedron and the 
smaller the PDOP, and, hence, the smaller 
the rms position error. If more than four sat­
ellites are in view, a GPS receiver can select 
the four that give the smallest PDOP. 

The minimum value of PDOP is obtained 
with one satellite at the user's zenith and 
three satellites with evenly spaced azimuths 
on the user's horizon. On the other hand, the 
maximum value of PDOP is, theoretically, in­
finity. This would occur if the four satellites 
were situated in the same plane. The final 
GPS constellation has been designed to pro­
vide users anywhere in the world with a 
PDOP of less than 6 (except for occasional 
very brief periods of time), assuming four sat­
ellites are used with a minimum satellite ele­
vation angle of 5°. 

Several other related DOP factors have 
been defined. HDOP is the dilution of preci­
sion in the two horizontal coordinates; 
VDOP is the dilution of precision in the ver­
tical coordinate; and TDOP is the dilution of 
precision in the range equivalent of the re­
ceiver clock offset. A factor that combines 
the effects of geometry on both position and 
clock offset is the geometric dilution of pre­
cision, GDOP. Figure 5 shows the global 
range of GDOP values, averaged over a 24-
hour period, for the current 15-satellite con­
stellation. Users can expect the PDOP to be 
less than 3 most of the time once all the GPS 
satellites are in place. 



Other accuracy measures. In general, the three 
coordinates of a three-dimensional position 
fix will have different error probability dis­
tributions and, hence, different standard de­
viations. Also, the errors between any two co­
ordinates may be mutually correlated; that is, 
an error in one coordinate will have an effect 
on the other. 

If we trace out a contour of equal error 
probability density in all three coordinates, 
we get an ellipsoid centered on our position 
fix. The shape of the ellipsoid is determined 
by the standard deviations of the coordinates 
and their correlations. (See Figure 6.) Note 
that, in general, due to the correlations, the 
ellipsoid axes are not oriented in the same di­
rections as the coordinate axes. There is a cer­
tain probability that the true position lies 
within the ellipsoid. If this probability is 20 
percent, then this ellipsoid is referred to as 
the standard error ellipsoid. 
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If the standard deviations for the three coor­
dinate directions are identical, the ellipsoid de­
generates into a sphere. The radius of such 
a sphere, inside of which there is a 50 per­
cent probability of the true position fix being 
located, is called spherical error probable 
(SEP). 

The term SEP is used even when the ac­
tual error figure is an ellipsoid. If we make 
a large number of position fixes at a given lo­
cation, we can say that the SEP is the radius 
of the sphere containing 50 percent of the in­
dividual fixes. The Department of Defense's 
accuracy goal for GPS is to have a world­
wide SEP of 15 meters. 

If we forget about the height coordinate 
for the time being and consider just the hori­
zontal coordinates, we can construct the two­
dimensional analogue to the error ellipsoid: 
the error ellipse. It is defined as the contour 
of equal probability density in the two hori-
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Figure 7. A sample of 1 00 normally distributed horizontal position fix errors. These 
artificially generated errors have standard deviations in latitude and longitude of 15.8 
meters and 13.6 meters, respectively, with a correlation of 0.64. Shown are the error 
ellipse, the circle with 2 drms (41..8 meters) radius, and the circle with a radius equal 
to the CEP (16.4 meters) corresponding to this sample. 
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zontal dimensions. As with the error ellip­
soid, an error ellipse has a certain probabil­
ity that the true horizontal coordinates of a 
position lie within it. For the standard error 
ellipse, this probability is 39 percent. As 
with the error ellipsoid, the semi-axes of the 
error ellipse, in general, are not equal to the 
standard deviations. However, given the 
standard deviations in the horizontal coordi­
nates and their correlation, the semimajor 
and semiminor axes of the ellipse can be 
calculated. 

The two-dimensional analogue of SEP is 
circular error probable (CEP). As shown in 
Figure 7, CEP is the radius of the circle in­
side of which the true horizontal coordinates 
of a position have a 50 percent probability of 
being located. 

Another accuracy measure frequently used 
in navigation is twice the root-mean-square 
of the horizontal distance error, or 2 drms for 
short. It is equal to twice the square root of 
the sum of the squares of the lengths of the 
semimajor and semiminor axes of the error 
ellipse. A circle of radius 2 drms will con­
tain the true horizontal position with a certain 
probability. Unfortunately, a drawback of 2 
drms as a measure of error is that it does not 
correspond to a fixed value of probability for 
a given value of error. The probability var­
ies with the eccentricity of the error ellipse, 
ranging from 95.4 percent (the ellipse col­
lapses to a line) to 98.2 percent (the ellipse 
becomes a circle). Because of this variation 
in probability, there is not a constant relation­
ship between values of 2 drms and CEP. The 
ratio of 2 drms to CEP varies with the eccen­
tricity of the error ellipse from 2.4 to 3 . 

Because of its wide use in navigation, 2 
drms is used to specify the designed level of 
horizontal positioning accuracy for the GPS 
Standard Positioning Service (SPS) and Pre­
cise Positioning Service (PPS). The latest is­
sue of the Federal Radionavigation Plan 
(FRP) states that when GPS is declared op­
erational, the horizontal accuracy for SPS is 
planned to be 100 meters 2 drms at 95 per­
cent probability. This means that 95 percent 
of all horizontal position fixes should be 
within 100 meters of the true position. 

But what about the other 5 percent? Theo­
retically, if the position errors due to the vari­
ous UEREs including SA are from a Gauss­
ian distribution, we could occasionally get 
extremely large errors. However, the Depart­
ment of Defense will control SA so that ex­
cursions will not exceed 300 meters 99.99 per­
cent of the time. The corresponding designed 
2 drms (95 percent) horizontal accuracy for 
PPS is 17. 8 meters. 



The FRP describes the designed accuracy 
of the vertical component of a GPS-derived 
position at the 2u level. As this corresponds 
to a 95 percent probability level, it is consis­
tent with the accuracy quoted for the horizon­
tal position. For SPS, the designed vertical 
2u is 156 meters; for PPS, it is 27.7 meters. 
The FRP also gives the designed accuracy 
of receiver clock synchronization at the 1 u 
level. For SPS, accuracy is planned to be 
167 nanoseconds; for PPS, it is given conser­
vatively as 100 nanoseconds. 
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It should be pointed out that the stated and statistics involved in determining posi­
PPS position and time accuracies are de- tions using GPS. Although a GPS receiver 
signed estimates of GPS capabilities, and su- can be operated without the user knowing 
perior results have already been obtained in any of this math, a basic understanding of 
practice. Significantly greater accuracies can how the receiver determines a position is im­
be obtained by both PPS and SPS users by portant for assessing the accuracy and reliabil­
operating in a differential mode with two or ity of the numbers presented on a receiver's 
more receivers used simultaneously. In fact, display screen. • 
almost all of the effects of SA can be re-
moved when operating in this mode. 

CONCLUSION 
In this column, we've taken a brief introduc­
tory look at the geometry, algebra, calculus, 
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